Ratchadawan Cheewangkoon
Chiang Mai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ratchadawan Cheewangkoon.
Persoonia | 2009
Ratchadawan Cheewangkoon; Johannes Z. Groenewald; Brett A. Summerell; Kevin D. Hyde; Chaiwat To-anun; Pedro W. Crous
Twenty-six species of microfungi are treated, the majority of which are associated with leaf spots of Corymbia, Eucalyptus and Syzygium spp. (Myrtaceae). The treated species include three new genera, Bagadiella, Foliocryphia and Pseudoramichloridium, 20 new species and one new combination. Novelties on Eucalyptus include: Antennariella placitae, Bagadiella lunata, Cladoriella rubrigena, C. paleospora, Cyphellophora eucalypti, Elsinoë eucalypticola, Foliocryphia eucalypti, Leptoxyphium madagascariense, Neofabraea eucalypti, Polyscytalum algarvense, Quambalaria simpsonii, Selenophoma australiensis, Sphaceloma tectificae, Strelitziana australiensis and Zeloasperisporium eucalyptorum. Stylaspergillus synanamorphs are reported for two species of Parasympodiella, P. eucalypti sp. nov. and P. elongata, while Blastacervulus eucalypti, Minimedusa obcoronata and Sydowia eucalypti are described from culture. Furthermore, Penidiella corymbia and Pseudoramichloridium henryi are newly described on Corymbia, Pseudocercospora palleobrunnea on Syzygium and Rachicladosporium americanum on leaf litter. To facilitate species identification, as well as determine phylogenetic relationships, DNA sequence data were generated from the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions of all taxa studied.
Fungal Diversity | 2016
Sajeewa S. N. Maharachchikumbura; Kevin D. Hyde; E. B. Gareth Jones; Eric H. C. McKenzie; Jayarama D. Bhat; Monika C. Dayarathne; Shi Ke Huang; Chada Norphanphoun; Indunil C. Senanayake; Rekhani H. Perera; Qiu Ju Shang; Yuan-Pin Xiao; Melvina J. D’souza; Sinang Hongsanan; Ruvishika S. Jayawardena; Dinushani A. Daranagama; Sirinapa Konta; Ishani D. Goonasekara; Wen Ying Zhuang; Rajesh Jeewon; Alan J. L. Phillips; Mohamed A. Abdel-Wahab; Abdullah M. Al-Sadi; Ali H. Bahkali; Saranyaphat Boonmee; Nattawut Boonyuen; Ratchadawan Cheewangkoon; Asha J. Dissanayake; Ji-Chuan Kang; Qi Rui Li
Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi characterized mainly by perithecial ascomata and inoperculate unitunicate asci. The class includes many important plant pathogens, as well as endophytes, saprobes, epiphytes, coprophilous and fungicolous, lichenized or lichenicolous taxa. They occur in terrestrial, freshwater and marine habitats worldwide. This paper reviews the 107 families of the class Sordariomycetes and provides a modified backbone tree based on phylogenetic analysis of four combined loci, with a maximum five representative taxa from each family, where available. This paper brings together for the first time, since Barrs’ 1990 Prodromus, descriptions, notes on the history, and plates or illustrations of type or representative taxa of each family, a list of accepted genera, including asexual genera and a key to these taxa of Sordariomycetes. Delineation of taxa is supported where possible by molecular data. The outline is based on literature to the end of 2015 and the Sordariomycetes now comprises six subclasses, 32 orders, 105 families and 1331 genera. The family Obryzaceae and Pleurotremataceae are excluded from the class.
Persoonia | 2013
Pedro W. Crous; Michael J. Wingfield; Josep Guarro; Ratchadawan Cheewangkoon; M. Van der Bank; Wijnand J. Swart; Alberto M. Stchigel; José F. Cano-Lira; Jolanda Roux; H. Madrid; Ulrike Damm; Alan R. Wood; Lucas A. Shuttleworth; C.S. Hodges; M. Munster; M. de Jesús Yáñez-Morales; L. Zúñiga-Estrada; Elsie M. Cruywagen; G.S. de Hoog; C. Silvera; J. Najafzadeh; E.M. Davison; P.J.N. Davison; M.D. Barrett; R.L. Barrett; Dimuthu S. Manamgoda; Andrew M. Minnis; N.M. Kleczewski; S.L. Flory; Lisa A. Castlebury
Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Persoonia | 2014
Pedro W. Crous; Roger G. Shivas; W. Quaedvlieg; M. Van der Bank; Y. Zhang; Brett A. Summerell; Josep Guarro; Michael J. Wingfield; Alan R. Wood; Acelino Couto Alfenas; Uwe Braun; J. F. Cano-Lira; Dania García; Yasmina Marin-Felix; P. Alvarado; J.P. Andrade; J. Armengol; A. Assefa; A. den Breeÿen; Ippolito Camele; Ratchadawan Cheewangkoon; J.T. De Souza; Tuan A. Duong; F. Esteve-Raventós; Jacques Fournier; Salvatore Frisullo; J. García-Jiménez; A. Gardiennet; Josepa Gené; Margarita Hernández-Restrepo
Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated human lesion (Georgia), Hyalocladosporiella from Tectona grandis (Brazil), Pseudoacremonium from Saccharum spontaneum and Melnikomyces from leaf litter (Vietnam), Annellosympodiella from Juniperus procera (Ethiopia), Neoceratosperma from Eucalyptus leaves (Thailand), Ramopenidiella from Cycas calcicola (Australia), Cephalotrichiella from air in the Netherlands, Neocamarosporium from Mesembryanthemum sp. and Acervuloseptoria from Ziziphus mucronata (South Africa) and Setophaeosphaeria from Hemerocallis fulva (China). Several novel combinations are also introduced, namely for Phaeosphaeria setosa as Setophaeosphaeria setosa, Phoma heteroderae as Peyronellaea heteroderae and Phyllosticta maydis as Peyronellaea maydis. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Persoonia | 2008
Ratchadawan Cheewangkoon; Pedro W. Crous; Kevin D. Hyde; Johannes Z. Groenewald; C. To-anan
Species of Mycosphaerella and their related anamorphs represent potentially serious foliar pathogens of Eucalyptus. The fungi treated in the present study were isolated from symptomatic Eucalyptus leaves collected in Thailand during June–October 2007. Species were initially identified based on morphological and cultural characteristics. Identifications were confirmed using comparisons of DNA sequence data of the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions. To help distinguish species of Pseudocercospora, the dataset was expanded by generating partial sequences of the translation elongation factor 1-α and actin genes. By integrating the morphological and molecular datasets, five new taxa were distinguished, namely Mycosphaerella irregulari, M. pseudomarksii, M. quasiparkii, Penidiella eucalypti and Pseudocercospora chiangmaiensis, while M. vietnamensis represents a new record for Thailand.
Persoonia | 2015
Pedro W. Crous; Michael J. Wingfield; J.J. Le Roux; D. Strasberg; Roger G. Shivas; P. Alvarado; Jacqueline Edwards; G. Moreno; R. Sharma; M. S. Sonawane; Yu Pei Tan; A. Altes; T. Barasubiye; C.W. Barnes; Robert A. Blanchette; D. Boertmann; A. Bogo; J. R. Carlavilla; Ratchadawan Cheewangkoon; Rosalie Daniel; Z.W. de Beer; M. de Jesús Yáñez-Morales; Tuan A. Duong; J. Fernandez-Vicente; Andrew D. W. Geering; David Guest; Benjamin W. Held; M. Heykoop; V. Hubka; A. M. Ismail
Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Studies in Mycology | 2013
Saowanee Wikee; Lorenzo Lombard; Chiharu Nakashima; Keiichi Motohashi; Ekachai Chukeatirote; Ratchadawan Cheewangkoon; Eric H. C. McKenzie; Kevin D. Hyde; Pedro W. Crous
Phyllosticta is a geographically widespread genus of plant pathogenic fungi with a diverse host range. This study redefines Phyllosticta, and shows that it clusters sister to the Botryosphaeriaceae (Botryosphaeriales, Dothideomycetes), for which the older family name Phyllostictaceae is resurrected. In moving to a unit nomenclature for fungi, the generic name Phyllosticta was chosen over Guignardia in previous studies, an approach that we support here. We use a multigene DNA dataset of the ITS, LSU, ACT, TEF and GPDH gene regions to investigate 129 isolates of Phyllosticta, representing about 170 species names, many of which are shown to be synonyms of the ubiquitous endophyte P. capitalensis. Based on the data generated here, 12 new species are introduced, while epitype and neotype specimens are designated for a further seven species. One species of interest is P. citrimaxima associated with tan spot of Citrus maxima fruit in Thailand, which adds a fifth species to the citrus black spot complex. Previous morphological studies lumped many taxa under single names that represent complexes. In spite of this Phyllosticta is a species-rich genus, and many of these taxa need to be recollected in order to resolve their phylogeny and taxonomy. Taxonomic novelties: New species - Phyllosticta abieticola Wikee & Crous, P. aloeicola Wikee & Crous, P. citrimaxima Wikee, Crous, K.D. Hyde & McKenzie, P. leucothoicola Wikee, Motohashi & Crous, P. mangifera-indica Wikee, Crous, K.D. Hyde & McKenzie, P. neopyrolae Wikee, Motohashi, Crous, K.D. Hyde & McKenzie, P. pachysandricola Wikee, Motohashi & Crous, P. paxistimae Wikee & Crous, P. podocarpicola Wikee, Crous, K.D. Hyde & McKenzie, P. rhaphiolepidis Wikee, C. Nakash. & Crous, P. rubra Wikee & Crous, P. vacciniicola Wikee, Crous, K.D. Hyde & McKenzie; New combinations - P. foliorum (Sacc.) Wikee & Crous, P. philoprina (Berk. & M.A. Curtis) Wikee & Crous; Epitypifications (basionyms) - P. concentrica Sacc., P. cussoniae Cejp, P. owaniana G. Winter; Neotypifications (basionyms) - Phyllosticta cordylinophila P.A. Young, Physalospora gregaria var. foliorum Sacc., Sphaeropsis hypoglossi Mont., Sphaeropsis minima Berk. & M.A. Curtis.
Fungal Biology | 2017
Tao Yang; Johannes Z. Groenewald; Ratchadawan Cheewangkoon; Fahimeh Jami; Jafar Abdollahzadeh; Lorenzo Lombard; Pedro W. Crous
Members of Botryosphaeriales are ecologically diverse, but most commonly associated with leaf spots, fruit and root rots, die-back or cankers of diverse woody hosts. Based on morphology and DNA sequence data, the Botryosphaeriales have to date been shown to contain eight families, with an additional two, Endomelanconiopsisaceae (Endomelanconiopsis) and Pseudofusicoccumaceae (Pseudofusicoccum) being newly described in this study. Furthermore, Oblongocollomyces is introduced as new genus, while Spencermartinsia is reduced to synonymy under Dothiorella. Novel species include Diplodia pyri (Pyrus sp., the Netherlands), Diplodia citricarpa (Citrus sp., Iran), Lasiodiplodia vitis (Vitis vinifera, Italy), L. sterculiae (Sterculia oblonga, Germany), Neofusicoccum pistaciarum (Pistacia vera, USA), N. buxi (Buxus sempervirens, France), N. stellenboschiana (Vitis vinifera, South Africa), and Saccharata hawaiiensis (Protea laurifolia, Hawaii). New combinations are also proposed for Camarosporium pistaciae (associated with fruit rot of Pistacia vera) in Neofusicoccum, and Sphaeria gallae (associated with galls of Quercus) in Diplodia. The combination of large subunit of the nuclear ribosomal RNA gene (LSU)-rpb2 proved effective at delineating taxa at family and generic level. Furthermore, rpb2 also added additional resolution for species delimitation, in combination with ITS, tef1 and tub2. In this study we analysed 499 isolates, and produce an expanded phylogenetic backbone for Botryosphaeriales, which will help to delimit novelties at species, genus and family level in future.
Persoonia | 2015
T. Trakunyingcharoen; Lorenzo Lombard; Johannes Z. Groenewald; Ratchadawan Cheewangkoon; Chaiwat To-anun; Pedro W. Crous
Members of Botryosphaeriales are commonly encountered as endophytes or pathogens of various plant hosts. The Botryosphaeriaceae represents the predominant family within this order, containing numerous species associated with canker and dieback disease on a wide range of woody hosts. During the course of routine surveys from various plant hosts in Thailand, numerous isolates of Botryosphaeriaceae, including Aplosporellaceae were collected. Isolates were subsequently identified based on a combination of morphological characteristics and phylogenetic analysis of a combined dataset of the ITS and EF1-α gene regions. The resulting phylogenetic tree revealed 11 well-supported clades, correlating with different members of Botryosphaeriales. Other than confirming the presence of taxa such as Lasiodiplodia theobromae, L. pseudotheobromae and Neofusicoccum parvum, new records for Thailand include Pseudofusicoccum adansoniae and P. ardesiacum. Furthermore, four novel species are described, namely Diplodia neojuniperi from Juniperus chinensis, Lasiodiplodia thailandica from Mangifera indica, Pseudofusicoccum artocarpi and Aplosporella artocarpi from Artocarpus heterophyllus, while a sexual morph is also newly reported for L. gonubiensis. Further research is presently underway to determine the pathogenicity and relative importance of these species on different woody hosts in Thailand.
IMA Fungus | 2014
Thippawan Trakunyingcharoen; Lorenzo Lombard; Johannes Z. Groenewald; Ratchadawan Cheewangkoon; Chaiwat To-anun; Acelino Couto Alfenas; Pedro W. Crous
Species of Sphaerellopsis (sexual morph Eudarluca) are well-known cosmopolitan mycoparasites occurring on a wide range of rusts. Although their potential role as biocontrol agents has received some attention, the molecular phylogeny of the genus has never been resolved. Based on morphology and DNA sequence data of the large subunit nuclear ribosomal RNA gene (LSU, 28S) and the internal transcribed spacers (ITS) and 5.8S rRNA gene of the nrDNA operon, the genus Sphaerellopsis is shown to belong to Leptosphaeriaceae in Dothideomycetes. Sphaerellopsis is circumscribed, and the sexually typified generic name Eudarluca treated as a synonym on the basis that Sphaerellopsis is more commonly used in literature, is the older generic name, and is the morph commonly encountered by plant pathologists in the field. A neotype is designated for Sphaerellopsis filum, and two new species are introduced, S. macroconidialis and S. paraphysata spp. nov. Species previously incorrectly placed in Sphaerellopsis are allocated to Neosphaerellopsis gen. nov. as N. thailandica, and to the genus Acrocalymma, as A. fici. The genus Rhizopycnis is nestled among species of Acrocalymma, and reduced to synonymy based on its morphology and DNA phylogeny, while Acrocalymmaceae is introduced as novel family to accommodate members of this genus in the Dothideomycetes. Furthermore, Sphaerellopsis proved to be phylogenetically closely allied to a lichenicolous complex of phoma-like taxa, for which the new genera Diederichomyces and Xenophoma are established. Several new combinations are introduced, namely D. xanthomendozae, D. ficuzzae, D. caloplacae, D. cladoniicola, D. foliaceiphila, and X. puncteliae combs. nov, while Paraphaeosphaeria parmeliae sp. nov. is newly described.