Ratih Pangestuti
Indonesian Institute of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ratih Pangestuti.
Marine Drugs | 2011
Ratih Pangestuti; Se-Kwon Kim
The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection.
Marine Drugs | 2010
Ratih Pangestuti; Se-Kwon Kim
Neuronal cells are extremely vulnerable and have a limited capacity for self-repair in response to injury. For those reasons, there is obvious interest in limiting neuronal damage. Mechanisms and strategies used in order to protect against neuronal injury, apoptosis, dysfunction, and degeneration in the central nervous system are recognized as neuroprotection. Neuroprotection could be achieved through several classes of natural and synthetic neuroprotective agents. However, considering the side effects of synthetic neuroprotective agents, the search for natural neuroprotective agents has received great attention. Recently, an increasing number of studies have identified neuroprotective properties of chitosan and its derivatives; however, there are some significant challenges that must be overcome for the success of this approach. Hence, the objective of this review is to discuss neuroprotective properties of chitosan and its derivatives.
International Journal of Biological Macromolecules | 2011
Ratih Pangestuti; Soon-Sun Bak; Se-Kwon Kim
Chitooligosaccharides (COS), depolymerized products of chitosan, has received considerable attention as bioactive material due to their biocompatible, biodegradable, non-toxic and non-allergenic natures. In this study, COS of four different molecular weight ranges (<1, 1-3, 3-5 and 5-10 kDa) were investigated for their abilities to modulate inflammatory mediators in lipopolysaccharides (LPS)-stimulated BV2 microglia. At the concentration of 500 μg/ml, COS attenuate the productions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions. Furthermore, the release and expression levels of inflammatory cytokines; including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were also attenuated by COS. Notably, the inhibitory activity of COS depends significantly on its molecular weight, with lower molecular weight showed higher activity. In addition, the suppressive effects on the phosphorylation of JNK and p38 mitogen-activated protein kinase (MAPK) by COS were confirmed. These results indicate that COS could be used as an inhibitor in regulating microglial inflammatory responses. Moreover, COS may assist therapeutic treatment of neurodegenerative diseases which accompanied with microglial activation.
Advances in food and nutrition research | 2011
Se-Kwon Kim; Ratih Pangestuti
The importance of marine algae as sources of functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and investigation of novel bioactive ingredients with biological activities from marine algae have attracted great attention. Among functional ingredients identified from marine algae, fucoxanthin has received particular interest. Fucoxanthin has been attributed with extraordinary potential for protecting the organism against a wide range of diseases and has considerable potential and promising applications in human health. Fucoxanthin has been reported to exhibit various beneficial biological activities such as antioxidant, anticancer, anti-inflammatory, antiobesity, and neuroprotective activities. In this chapter, the currently available scientific literatures regarding the most significant activities of fucoxanthin are summarized.
Neurotoxicology | 2013
Pradeep Dewapriya; Yong-Xin Li; S.W.A. Himaya; Ratih Pangestuti; Se-Kwon Kim
A pathological hallmark of Alzheimers disease (AD), aggregation and deposition of amyloid-β peptides, has been recognized as a potent activator of microglia-mediated neuroinflammation and neuronal dysfunction. Therefore, downregulation of microglial activation has a significant therapeutic demand. In this study, focus was given to evaluate the ability of neoechinulin A, an indole alkaloid isolated from marine-derived Microsporum sp., to attenuate microglial activation by oligomeric amyloid-β 1-42 (Aβ42). Neoechinulin A treatment significantly inhibited the generation of reactive oxygen and nitrogen species in Aβ42-activated BV-2 microglia cells. In addition, we found that neoechinulin A significantly suppressed the production of neurotoxic inflammatory mediator tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) in activated BV-2 cells. Moreover, the treatment downregulated the protein and gene expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, IL-1β and IL-6. Further, activated microglia-mediated apoptosis of PC-12 pheochromocytoma cells was significantly repressed by neoechinulin A. The molecular mechanism studies suggested that neoechinulin A may block the phosphorylation of mitogen-activated protein kinase (MAPK) molecule p38, apoptosis signal-regulating kinase 1 (ASK-1) and nuclear translocation of nuclear factor-κB (NF-κB) p65 and p50 subunits. Regulation of these signalling pathways have most probably contributed to the anti-inflammatory activity of neoechinulin A. Collectively, these results suggest that with further studies neoechinulin A have a potential to be developed as a modulator of neuroinflammatory process in AD.
Journal of Agricultural and Food Chemistry | 2013
Ratih Pangestuti; Thanh-Sang Vo; Dai-Hung Ngo; Se-Kwon Kim
Alzheimers disease (AD) is an irreversible, progressive neurodegenerative disease that slowly destroys memory and thinking skills. In the brains of AD patients, signs of neuronal degeneration are accompanied by markers of microglial activation and inflammation as well as oxidant damage. This study tested the hypothesis that fucoxanthin, which is known to exert a variety of pharmacological properties, would ameliorate oxidative stress and inflammation in amyloid-β42 (Aβ42)-induced BV2 microglia cells. It was found that fucoxanthin treatment attenuated pro-inflammatory secretion in BV2 cells as determined by ELISA analysis. Suppressive effects of fucoxanthin on the phosphorylation mitogen-activated protein kinase (MAPK) pathway were confirmed. Moreover, fucoxanthin was able to inhibit free radical-induced DNA oxidation in BV2 cells. This effect was associated with a significant reduction of intracellular reactive oxygen species (ROS) formation and recovery of antioxidative enzymes. The findings in this study suggest that fucoxanthin may serve as a negative feedback regulator of inflammation and oxidative stress in BV2 cells and thereby may protect neuronal cells from neurotoxic mediators released by microglia.
Journal of Functional Biomaterials | 2010
Jayachandran Venkatesan; Ratih Pangestuti; Zhong-Ji Qian; BoMi Ryu; Se-Kwon Kim
Phosphorylated chitooligosaccharides (P-COS) were prepared using a H3PO4, P2O5, Et3PO4 and hexanol solvent system. The P-COS were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermo gravimetric-Differential Thermal Analyzer (TG-DTA), 13C NMR, 31P NMR, X-ray diffraction analysis, solubility studies, biocompatibility and Alkaline Phosphatase Activity (ALP). The results reveal that phosphorylation occurred at the C3 and C6 position of OH groups and the C2 position of NH2 group. FT-IR confirmed no decomposition in pyranose ring in P-COS even with heating and treatment in acidic conditions. The amorphous nature of P-COS was confirmed by X-ray diffraction analysis. Further, the biocompatibility and alkaline phosphatase activity of P-COS were checked against the osteosarcoma MG63 cell line at different concentrations and no cytotoxicity was observed. After 12 h and 24 h of incubation, the ALP activity of P-COS was higher compared with the control group. These results suggest that P-COS is a biocompatible material and in future P-COS could open up a number of promising pharmaceutical and clinical applications to mankind.
Marine Drugs | 2017
Ratih Pangestuti; Se-Kwon Kim
Non-communicable diseases (NCD) are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer’s well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD.
Advances in food and nutrition research | 2014
Ratih Pangestuti; Se-Kwon Kim
Red seaweeds are popular and economically important worldwide and also well known for their medicinal effects due to the presence of phycocolloids. Carrageenans, the major phycocolloid group of red algae, have been extensively investigated for their vast array of bioactivities such as anticoagulant, antiviral, cholesterol-lowering effects, immunomodulatory activity, and antioxidant. Carrageenan possesses promising activity both in vitro and in vivo, showing promising potential to be developed as therapeutic agents. In this chapter, attempts have been made to examine the health benefit effects of carrageenans.
Food Science and Biotechnology | 2013
Ratih Pangestuti; Se-Kwon Kim
The marine environment is a rich source of materials with significant biological activities. Isolation and investigation of bioactive materials from marine organisms is a topic of current research interest in the food industry. Among marine-derived bioactive materials, peptides, chitosan, sulfated polysaccharides, phlorotannins, and natural pigments are potential neuroprotective agents. This review elaborates on the neuroprotective mechanisms of marine-derived bioactive materials and emphasizes prospects for use in neuroprotection as part of nutraceuticals and functional foods.