Ratko Vasic
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ratko Vasic.
Journal of Hydrometeorology | 2006
Randal D. Koster; Y. C. Sud; Zhichang Guo; Paul A. Dirmeyer; Gordon B. Bonan; Keith W. Oleson; Edmond Chan; Diana Verseghy; Peter M. Cox; Harvey Davies; Eva Kowalczyk; C. T. Gordon; Shinjiro Kanae; David M. Lawrence; Ping Liu; David Mocko; Cheng-Hsuan Lu; K. L. Mitchell; Sergey Malyshev; B. J. McAvaney; Taikan Oki; Tomohito J. Yamada; A. J. Pitman; Christopher M. Taylor; Ratko Vasic; Yongkang Xue
Abstract The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detai...
Journal of Geophysical Research | 2004
Yongkang Xue; H.-M. H. Juang; Wen Li; Stephen D. Prince; Ruth S. DeFries; Yanjun Jiao; Ratko Vasic
[1] Evidence is presented that exchanges of water and energy between the vegetation and the atmosphere play an important role in east Asian and West African monsoon development and are among the most important mechanisms governing the development of the monsoon. The results were obtained by conducting simulations for five months of 1987 using a general circulation model (GCM) coupled with two different land surface parameterizations, with and without explicit vegetation representations, referred to as the GCM/vegetation and the GCM/soil, respectively. The two land surface models produced similar results at the planetary scale but substantial differences at regional scales, especially in the monsoon regions and some of the large continental areas. In the simulation with GCM/soil, the east Asian summer monsoon moisture transport and precipitation were too strong in the premonsoon season, and an important east Asian monsoon feature, the abrupt monsoon northward jump, was unclear. In the GCM/ vegetation simulation, the abrupt northward jump and other monsoon evolution processes were simulated, such as the large-scale turning of the low-level airflow during the early monsoon stage in both regions. With improved initial soil moisture and vegetation maps, the intensity and spatial distribution of the summer precipitation were also improved. The two land surface representations produced different longitudinal and latitudinal sensible heat gradients at the surface that, in turn, influenced the low-level temperature and pressure gradients, wind flow (through geostrophic balance), and moisture transport. It is suggested that the great east-west thermal gradient may contribute to the abrupt northward jump and the latitudinal heating gradient may contribute to the clockwise and counterclockwise turning of the low-level wind. The results showed that under unstable atmospheric conditions, not only low-frequency mean forcings from the land surface, such as monthly mean albedo, but also the perturbation processes of vegetation were important to the monsoon evolution, affecting its intensity, the spatial distribution of precipitation, and associated circulation at the continental scale. INDEX TERMS: 1866 Hydrology: Soil moisture; 1833 Hydrology: Hydroclimatology; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation; KEYWORDS: land surface, monsoon, SSiB
Journal of Climate | 2007
Yongkang Xue; Ratko Vasic; Zavisa Janjic; Fedor Mesinger; Kenneth E. Mitchell
Abstract This study investigates the capability of the dynamic downscaling method (DDM) in a North American regional climate study using the Eta/Simplified Simple Biosphere (SSiB) Regional Climate Model (RCM). The main objective is to understand whether the Eta/SSiB RCM is capable of simulating North American regional climate features, mainly precipitation, at different scales under imposed boundary conditions. The summer of 1998 was selected for this study and the summers of 1993 and 1995 were used to confirm the 1998 results. The observed precipitation, NCEP–NCAR Global Reanalysis (NNGR), and North American Regional Reanalysis (NARR) were used for evaluation of the model’s simulations and/or as lateral boundary conditions (LBCs). A spectral analysis was applied to quantitatively examine the RCM’s downscaling ability at different scales. The simulations indicated that choice of domain size, LBCs, and grid spacing were crucial for the DDM. Several tests with different domain sizes indicated that the model...
Journal of Climate | 2010
Yongkang Xue; Fernando De Sales; Ratko Vasic; C. Roberto Mechoso; Akio Arakawa; Stephen D. Prince
Abstract A global and seasonal assessment of regions of the earth with strong climate–vegetation biophysical process (VBP) interactions is provided. The presence of VBP and degree of VBP effects on climate were assessed based on the skill of simulations of observed global precipitation by two general circulation models of the atmosphere coupled to three land models with varying degrees of complexity in VBP representation. The simulated VBP effects on precipitation were estimated to be about 10% of observed precipitation globally and 40% over land; the strongest impacts were in the monsoon regions. Among these, VBP impacts were highest on the West African, South Asian, East Asian, and South American monsoons. The specific characteristics of vegetation–precipitation interactions in northern high latitudes were identified. Different regions had different primary impact season(s) depending on regional climate characteristics and geographical features. The characteristics of VBP effects on surface energy and w...
Monthly Weather Review | 2011
Zavisa Janjic; Tijana Janjić; Ratko Vasic
Starting from three Eulerian second-order nonlinear advection schemes for semi-staggered Arakawa grids B/E, advection schemes of fourth order of formal accuracy were developed. All three second-order advection schemescontrolthenonlinear energycascadeincaseofnondivergentflowbyconservingquadraticquantities. Linearization of all three schemes leads to the same second-order linear advection scheme. The second-order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by modifying the advected quantity while still preserving consistency. Tests with linear advection of a cone confirm the advantage of the fourth-order scheme. However, if a localized, large amplitude and high wavenumber pattern is present in initial conditions, the clear advantage of the fourth-order scheme disappears. The new nonlinear fourth-order schemes are quadratic conservative and reduce to the Arakawa Jacobian for advected quantities in case of nondivergentflow. In case of generalflow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second-order schemes. However, for nondivergent flow, the conservation properties of the fourth-order schemes cannot be proven in the same way as those of the original second-order schemes. Therefore, demanding long-term and low-resolution nonlinear tests were carried out in order to investigate how well the fourth-order schemes control the nonlinear energy cascade. All schemes were able to maintain meaningful solutions throughout the test. Finally, the impact was examined of the fourth-order momentum advection on global medium-range forecasts. The 500-hPa anomaly correlation coefficient obtained using the best performing fourth-order scheme did not show an improvement compared to the tests using its second-order counterpart.
Journal of Geophysical Research | 2012
Yongkang Xue; Ratko Vasic; Zavisa Janjic; Yimin Liu; Peter C. Chu
[1] This study explores the impact of spring subsurface soil temperature (SUBT) anomaly in the western U.S. on North American summer precipitation, mainly southeastern U.S., and possible mechanisms using a regional climate Eta model and a general circulation model (GCM). The GCM produces the lateral boundary condition (LBC) for the Eta model. Two initial SUBT conditions (one cold and another warm) on May 1st were assigned for the GCM runs and the corresponding Eta runs. The results suggest that antecedent May 1st warm initial SUBT in the western U.S. contributes positive June precipitation over the southern U.S. and less precipitation to the north, consistent with the observed anomalies between a year with a warm spring and a year with a cold spring in the western U.S. The anomalous cyclone induced by the surface heating due to SUBT anomaly propagated eastward through Rossby waves in westerly mean flow. In addition, the steering flow also contributed to the dissipation of perturbation in the northeastern U.S. and its enhancement in southeastern U.S. However, these results were obtained only when the Eta model run was driven by the corresponding GCM run. When the same reanalysis data were applied for both (cold and warm initial SUBT) Eta runs’ LBCs, the precipitation anomalies could not be properly produced, indicating the intimate dependence of the regional climate sensitivity downscaling on the imposed global climate forcing, especially when the impact was through wave propagation in the large-scale atmospheric flow.
Environmental Research Letters | 2016
Yongkang Xue; Catalina M. Oaida; Ismaila Diallo; J. David Neelin; Suosuo Li; Fernando De Sales; Y. Gu; David A. Robinson; Ratko Vasic; Lan Yi
Author(s): Xue, Y; Oaida, CM; Diallo, I; Neelin, JD; Li, S; De Sales, F; Gu, Y; Robinson, DA; Vasic, R; Yi, L | Abstract:
Monthly Weather Review | 2017
Miodrag Rančić; R. James Purser; Dušan Jović; Ratko Vasic; Thomas L. Black
AbstractThe rapid expansion of contemporary computers is expected to enable operational integrations of global models of the atmosphere at resolutions close to 1 km, using tens of thousands of processors in the foreseeable future. Consequently, the algorithmic approach to global modeling of the atmosphere will need to change in order to better adjust to the new computing environment. One simple and convenient solution is to use low-order finite-differencing models, which generally require only local exchange of messages between processing elements, and thus are more compatible with the new computing environment. These models have already been tested with physics and are well established at high resolutions over regional domains. A global nonhydrostatic model, the Nonhydrostatic Multiscale Model on the B grid (NMMB), developed at the Environmental Modeling Center of the National Centers for Environmental Prediction during the first decade of this century is one such model. A drawback of the original versio...
Environmental Research Letters | 2016
Yongkang Xue; Catalina M. Oaida; Ismaila Diallo; J. David Neelin; Suosuo Li; Fernando De Sales; Yu Gu; David A. Robinson; Ratko Vasic; Lan Yi
Home Search Collections Journals About Contact us My IOPscience Spring land temperature anomalies in northwestern US and the summer drought over Southern Plains and adjacent areas This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 Environ. Res. Lett. 11 044018 (http://iopscience.iop.org/1748-9326/11/4/044018) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 128.97.194.87 This content was downloaded on 14/04/2016 at 00:07 Please note that terms and conditions apply.
Journal of Geophysical Research | 2018
Yongkang Xue; Ismaila Diallo; Wenkai Li; J. David Neelin; Peter C. Chu; Ratko Vasic; Weidong Guo; Qian Li; David A. Robinson; Yuejian Zhu; Congbin Fu; Catalina M. Oaida
Author(s): Xue, Y; Diallo, I; Li, W; David Neelin, J; Chu, PC; Vasic, R; Guo, W; Li, Q; Robinson, DA; Zhu, Y; Fu, C; Oaida, CM | Abstract: ©2018. American Geophysical Union. All Rights Reserved. Sea surface temperature (SST) variability has been shown to have predictive value for land precipitation, although SSTs are unable to fully predict intraseasonal to interannual hydrologic extremes. The possible remote effects of large-scale land surface temperature (LST) and subsurface temperature (SUBT) anomalies in geographical areas upstream and closer to the areas of drought/flood have largely been ignored. Here evidence from climate observations and model simulations addresses these effects. Evaluation of observational data using Maximum Covariance Analysis identifies significant correlations between springtime 2-m air temperature (T2 m) cold (warm) anomalies in both the western U.S. and the Tibetan Plateau and downstream drought (flood) events in late spring/summer. To support these observational findings, climate models are used in sensitivity studies, in which initial LST/SUBT anomaly is imposed to produce observed T2 m anomaly, to demonstrate a causal relationship for two important cases: between spring warm T2 m/LST/SUBT anomalies in western U.S. and the extraordinary 2015 flood in Southern Great Plains and adjacent regions and between spring cold T2 m/LST/SUBT anomalies in the Tibetan Plateau and the severe 2003 drought south of the Yangtze River region. The LST/SUBT downstream effects in North America are associated with a large-scale atmospheric stationary wave extending eastward from the LST/SUBT anomaly region. The effects of SST in these cases are also tested and compared with the LST/SUBT effects. These results suggest that consideration of LST/SUBT anomalies has the potential to add value to intraseasonal prediction of dry and wet conditions, especially extreme drought/flood events. The results suggest the importance of developing land data and models capable of preserving observed soil memory.