Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Mocko is active.

Publication


Featured researches published by David Mocko.


Journal of Hydrometeorology | 2006

GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview

Randal D. Koster; Y. C. Sud; Zhichang Guo; Paul A. Dirmeyer; Gordon B. Bonan; Keith W. Oleson; Edmond Chan; Diana Verseghy; Peter M. Cox; Harvey Davies; Eva Kowalczyk; C. T. Gordon; Shinjiro Kanae; David M. Lawrence; Ping Liu; David Mocko; Cheng-Hsuan Lu; K. L. Mitchell; Sergey Malyshev; B. J. McAvaney; Taikan Oki; Tomohito J. Yamada; A. J. Pitman; Christopher M. Taylor; Ratko Vasic; Yongkang Xue

Abstract The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detai...


Global and Planetary Change | 2003

Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons

Laura C. Bowling; Dennis P. Lettenmaier; Bart Nijssen; L. Phil Graham; Douglas B. Clark; Mustapha El Maayar; Richard Essery; Sven Goers; Yeugeniy M. Gusev; Florence Habets; Bart van den Hurk; Jiming Jin; Daniel S. Kahan; Dag Lohmann; Xieyao Ma; Sarith P. P. Mahanama; David Mocko; Olga N. Nasonova; Guo Yue Niu; Patrick Samuelsson; Andrey B. Shmakin; Kumiko Takata; Diana Verseghy; Pedro Viterbo; Youlong Xia; Yongkang Xue; Zong-Liang Yang

Abstract Twenty-one land-surface schemes (LSSs) participated in the Project for Intercomparison of Land-surface Parameterizations (PILPS) Phase 2(e) experiment, which used data from the Torne–Kalix Rivers in northern Scandinavia. Atmospheric forcing data (precipitation, air temperature, specific humidity, wind speed, downward shortwave and longwave radiation) for a 20-year period (1979–1998) were provided to the 21 participating modeling groups for 218 1/4° grid cells that represented the study domain. The first decade (1979–1988) of the period was used for model spin-up. The quality of meteorologic forcing variables is of particular concern in high-latitude experiments and the quality of the gridded dataset was assessed to the extent possible. The lack of sub-daily precipitation, underestimation of true precipitation and the necessity to estimate incoming solar radiation were the primary data concerns for this study. The results from two of the three types of runs are analyzed in this, the first of a three-part paper: (1) calibration–validation runs—calibration of model parameters using observed streamflow was allowed for two small catchments (570 and 1300 km2), and parameters were then transferred to two other catchments of roughly similar size (2600 and 1500 km2) to assess the ability of models to represent ungauged areas elsewhere; and 2) reruns—using revised forcing data (to resolve problems with apparent underestimation of solar radiation of approximately 36%, and certain other problems with surface wind in the original forcing data). Model results for the period 1989–1998 are used to evaluate the performance of the participating land-surface schemes in a context that allows exploration of their ability to capture key processes spatially. In general, the experiment demonstrated that many of the LSSs are able to capture the limitations imposed on annual latent heat by the small net radiation available in this high-latitude environment. Simulated annual average net radiation varied between 16 and 40 W/m2 for the 21 models, and latent heat varied between 18 and 36 W/m2. Among-model differences in winter latent heat due to the treatment of aerodynamic resistance appear to be at least as important as those attributable to the treatment of canopy interception. In many models, the small annual net radiation forced negative sensible heat on average, which varied among the models between −11 and 9 W/m2. Even though the largest evaporation rates occur in the summer (June, July and August), model-predicted snow sublimation in winter has proportionately more influence on differences in annual runoff volume among the models. A calibration experiment for four small sub-catchments of the Torne–Kalix basin showed that model parameters that are typically adjusted during calibration, those that control storage of moisture in the soil column or on the land surface via ponding, influence the seasonal distribution of runoff, but have relatively little impact on annual runoff ratios. Similarly, there was no relationship between annual runoff ratios and the proportion of surface and subsurface discharge for the basin as a whole.


Journal of Hydrometeorology | 2006

Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) Data

Sonia I. Seneviratne; Randal D. Koster; Zhichang Guo; Paul A. Dirmeyer; Eva Kowalczyk; David M. Lawrence; Ping Liu; David Mocko; Cheng-Hsuan Lu; Keith W. Oleson; Diana Verseghy

Abstract Soil moisture memory is a key aspect of land–atmosphere interaction and has major implications for seasonal forecasting. Because of a severe lack of soil moisture observations on most continents, existing analyses of global-scale soil moisture memory have relied previously on atmospheric general circulation model (AGCM) experiments, with derived conclusions that are probably model dependent. The present study is the first survey examining and contrasting global-scale (near) monthly soil moisture memory characteristics across a broad range of AGCMs. The investigated simulations, performed with eight different AGCMs, were generated as part of the Global Land–Atmosphere Coupling Experiment. Overall, the AGCMs present relatively similar global patterns of soil moisture memory. Outliers are generally characterized by anomalous water-holding capacity or biases in radiation forcing. Water-holding capacity is highly variable among the analyzed AGCMs and is the main factor responsible for intermodel diffe...


Global and Planetary Change | 2003

Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 2: Comparison of model results with observations

Bart Nijssen; Laura C. Bowling; Dennis P. Lettenmaier; Douglas B. Clark; Mustapha El Maayar; Richard Essery; Sven Goers; Yeugeniy M. Gusev; Florence Habets; Bart van den Hurk; Jiming Jin; Daniel S. Kahan; Dag Lohmann; Xieyao Ma; Sarith P. P. Mahanama; David Mocko; Olga N. Nasonova; Guo Yue Niu; Patrick Samuelsson; Andrey B. Shmakin; Kumiko Takata; Diana Verseghy; Pedro Viterbo; Youlang Xia; Yongkang Xue; Zong-Liang Yang

Model results from 21 land-surface schemes (LSSs) designed for use in numerical weather prediction and climate models are compared with each other and with observations in the context of the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(e) model intercomparison experiment. This experiment focuses on simulations of land-surface water and energy fluxes in the 58,000-km2 Torne and Kalix river systems in northern Scandinavia, during the period 1989–1998. All models participating in PILPS Phase 2(e) capture the broad dynamics of snowmelt and runoff, but large differences in snow accumulation and ablation, turbulent heat fluxes, and streamflow exist. The greatest among-model differences in energy and moisture fluxes in these high-latitude environments occur during the spring snowmelt period, reflecting different model parameterizations of snow processes. Differences in net radiation are governed by differences in the simulated radiative surface temperature during the winter months and by differences in surface albedo during the spring/early summer. Differences in net radiation are smallest during the late summer when snow is absent. Although simulated snow sublimation is small for most models, a few models show annual snow sublimation of about 100 mm. These differences in snow sublimation appear to be largely dependent on differences in snow surface roughness parameterizations. The models with high sublimation generally lose their snowpacks too early compared to observations and underpredict the annual runoff. Differences in runoff parameterizations are reflected in differences in daily runoff statistics. Although most models show a greater variability in daily streamflow than the observations, the models with the greatest variability (as much as double the observed variability), produce most of their runoff through fast response, surface runoff mechanisms. As a group, those models that took advantage of an opportunity to calibrate to selected small catchments and to transfer calibration results to the basin at large had a smaller bias and root mean squared error (RMSE) in daily streamflow simulations compared with the models that did not calibrate.


Journal of Hydrometeorology | 2014

Assimilation of Remotely Sensed Soil Moisture and Snow Depth Retrievals for Drought Estimation

Sujay V. Kumar; Christa D. Peters-Lidard; David Mocko; Rolf H. Reichle; Yuqiong Liu; Kristi R. Arsenault; Youlong Xia; Michael B. Ek; George A. Riggs; Ben Livneh; Michael H. Cosh

AbstractThe accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979–2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translat...


Journal of Hydrometeorology | 2013

Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

Jiangfeng Wei; Paul A. Dirmeyer; Dominik Wisser; Michael G. Bosilovich; David Mocko

Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.


Journal of Geophysical Research | 2014

Application of USDM statistics in NLDAS-2: Optimal blended NLDAS drought index over the continental United States

Youlong Xia; Michael B. Ek; Christa D. Peters-Lidard; David Mocko; Mark Svoboda; Justin Sheffield; Eric F. Wood

This study performs three experiments to calibrate the drought area percentages in the continental United States (CONUS), six U.S. Drought Monitor (USDM) regions, and 48 states downloaded from the USDM archive website. The corresponding three experiments are named CONUS, Region, and State, respectively. The data sets used in these experiments are from the North American Land Data Assimilation System Phase 2 (NLDAS-2). The main purpose is to develop an automated USDM-based approach to objectively generate and reconstruct USDM-style drought maps using NLDAS-2 data by mimicking 10 year (2000–2009) USDM statistics. The results show that State and Region have larger correlation coefficients and smaller root-mean-square error (RMSE) and bias than CONUS when compared to the drought area percentages derived from the USDM, indicating that State and Region perform better than CONUS. In general, State marginally outperforms Region in terms of RMSE, bias, and correlation. Analysis of normalized optimal weight coefficients shows that soil moisture percentiles (top 1 m and total column) play the dominant role in most of the 48 states. The optimal blended NLDAS drought index (OBNDI) has higher simulation skills (correlation coefficient and Nash-Sutcliffe efficiency) in the South, Southeast, High Plains, and Midwest regions when compared to those in the West and Northeast. The highest simulation skills appear in TX and OK. By using optimal equations, we can reconstruct the long-term drought area percentages and OBNDI over the continental United States for the entire period of the NLDAS-2 data sets (January 1979 to present).


Journal of Hydrometeorology | 2016

Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System

Sujay V. Kumar; Benjamin F. Zaitchik; Christa D. Peters-Lidard; Matthew Rodell; Rolf H. Reichle; Bailing Li; Michael F. Jasinski; David Mocko; Augusto Getirana; Gabrielle De Lannoy; Michael H. Cosh; Christopher R. Hain; Martha C. Anderson; Kristi R. Arsenault; Youlong Xia; Michael B. Ek

AbstractThe objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across th...


Journal of Hydrometeorology | 2014

Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy

Paul A. Dirmeyer; Jiangfeng Wei; Michael G. Bosilovich; David Mocko

AbstractA quasi-isentropic, back-trajectory scheme is applied to output from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979–2005. The evaporative source patterns for any location and time period are effectively two-dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50%–400% larger than at monthly time scales. Significant differences ...


Earth Interactions | 2001

Refinements to SSiB with an Emphasis on Snow Physics: Evaluation and Validation Using GSWP and Valdai Data

David Mocko; Y. C. Sud

Abstract Refinements to the snow-physics scheme of the Simplified Simple Biosphere Model (SSiB) are described and evaluated. The upgrades include a partial redesign of the conceptual architecture of snowpack to better simulate the diurnal temperature of the snow surface. For a deep snowpack, there are two separate prognostic temperature snow layers: the top layer responds to diurnal fluctuations in the surface forcing, while the deep layer exhibits a slowly varying response. In addition, the use of a very deep soil temperature and a treatment of snow aging with its influence on snow density is parameterized and evaluated. The upgraded snow scheme produces better timing of snowmelt in Global Soil Wetness Project (GSWP)-style simulations using International Satellite Land Surface Climatology Project (ISLSCP) Initiative I data for 1987–88 in the Russian Wheat Belt region. To simulate more realistic runoff in regions with high orographic variability, additional improvements are made to SSiBs soil hydrology. ...

Collaboration


Dive into the David Mocko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujay V. Kumar

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Michael B. Ek

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Bruce Vollmer

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Rodell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis P. Lettenmaier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Helin Wei

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Hualan Rui

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge