Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raul F. Alvaro is active.

Publication


Featured researches published by Raul F. Alvaro.


Chemico-Biological Interactions | 1982

Drug residue formation from ronidazole, a 5-nitroimidazole. I. Characterization of in vitro protein alkylation

Susan B. West; Peter G. Wislocki; Karen M. Fiorentini; Raul F. Alvaro; Frank J. Wolf; Anthony Y.H. Lu

The metabolic activation of [14C]ronidazole by rat liver enzymes to metabolite(s) bound to macromolecules was investigated. The alkylation of protein by [14C]ronidazole metabolite(s) was catalyzed most efficiently by rat liver microsomes, in the absence of oxygen utilizing NADPH as a source of reducing equivalents. Based on a comparison of total ronidazole metabolized versus the amount bound to microsomal protein, approximately one molecule alkylates microsomal protein for every 20 molecules of ronidazole metabolized. Protein alkylation was strongly inhibited by sulfhydryl-containing compounds such as cysteine and glutathione whereas methionine had no effect. Based on HPLC analysis of ronidazole, cysteine was found not to inhibit microsomal metabolism of ronidazole ruling out a decrease in the rate of production of the reactive metabolite(s) as the mechanism of cysteine inhibition.


Chemico-Biological Interactions | 1984

Drug residue formation from ronidazole, a 5-nitroimidazole. V. Cysteine adducts formed upon reduction of ronidazole by dithionite or rat liver enzymes in the presence of cysteine

Peter G. Wislocki; Edward S. Bagan; W.J.A. Vandenheuvel; Robert Walker; Raul F. Alvaro; Byron H. Arison; Anthony Y.H. Lu; Frank J. Wolf

When ronidazole (1-methyl-5-nitroimidazole-2-methanol carbamate) is reduced by either dithionite or rat liver microsomal enzymes in the presence of cysteine, ronidazole-cysteine adducts can be isolated. Upon reduction with dithionite ronidazole can react with either one or two molecules of cysteine to yield either a monosubstituted ronidazole-cysteine adduct substituted at the 4-position or a disubstituted ronidazole-cysteine adduct substituted at both the 4-position and the 2-methylene position. In both products the carbamoyl group of ronidazole has been lost. The use of rat liver microsomes to reduce ronidazole led to the formation of the disubstituted ronidazole-cysteine adduct. These data indicate that upon the reduction of ronidazole one or more reactive species can be formed which can bind covalently to cysteine. The proposed reactive intermediates formed under these conditions may account for the observed binding of ronidazole to microsomal protein and the presence of intractable drug residues in the tissues of animals treated with this compound. They may also account for the mutagenicity of this compound in bacteria.


Bioorganic & Medicinal Chemistry Letters | 1998

3-Pyridyloxypropanolamine agonists of the β3 adrenergic receptor with improved pharmacokinetic properties

Ann E. Weber; Hyun O. Ok; Raul F. Alvaro; Mari R. Candelore; Margaret A. Cascieri; Shuet-Hing Lee Chiu; Liping Deng; Michael J. Forrest; Gary J. Hom; Jennifer E. Hutchins; John Kao; D. Euan MacIntyre; Robert J. Mathvink; Debra McLoughlin; Randall R. Miller; Ronald C. Newbold; Timothy V. Olah; Emma R. Parmee; Leroy Perkins; Ralph A. Stearns; Catherine D. Strader; John Szumiloski; Yui S. Tang; Laurie Tota; Pasquale P. Vicario; Matthew J. Wyvratt; Michael H. Fisher

Pyridyloxypropanolamines L-749,372 (8, beta 3 EC50 = 3.6 nM) and L-750,355 (29, beta 3 EC50 = 13 nM) are selective partial agonists of the human receptor, with 33% and 49% activation, respectively. Both stimulate lipolysis in rhesus monkeys (ED50 = 2 and 0.8 mg/kg, respectively), with minimal effects on heart rate. Oral bioavailability in dogs, 41% for L-749,372 and 47% for L-750,355, is improved relative to phenol analogs.


ACS Medicinal Chemistry Letters | 2014

Discovery of MK-4409, a Novel Oxazole FAAH Inhibitor for the Treatment of Inflammatory and Neuropathic Pain

Harry R. Chobanian; Yan Guo; Ping Liu; Marc D. Chioda; Selena Fung; Thomas J. Lanza; Linda Chang; Raman K. Bakshi; James Dellureficio; Qingmei Hong; Mark McLaughlin; Kevin M. Belyk; Shane W. Krska; Amanda K. Makarewicz; Elliot J. Martel; Joseph F. Leone; Lisa Frey; Bindhu V. Karanam; Maria Madeira; Raul F. Alvaro; Joyce Shuman; Gino Salituro; Jenna L. Terebetski; Nina Jochnowitz; Shruti Mistry; Erin McGowan; Richard Hajdu; Mark Rosenbach; Catherine Abbadie; Jessica Alexander

We report herein the identification of MK-4409, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor. Starting from a high throughput screening (HTS) hit, medicinal chemistry efforts focused on optimizing of FAAH inhibition in vitro potency, improving the pharmacokinetic (PK) profile, and increasing in vivo efficacy in rodent inflammatory and neuropathic pain assays.


Chemico-Biological Interactions | 1992

Drug residue formation from ronidazole, a 5-nitroimidazole. VIII. Identification of the 2-methylene position as a site of protein alkylation.

Raul F. Alvaro; Peter G. Wislocki; Gerald T. Miwa; Anthony Y.H. Lu

Ronidazole protein-bound adducts were generated by the in vitro anaerobic incubation of [2-methylene-14C]ronidazole with microsomes from the livers of male rats. Acid hydrolysis of the protein adducts yielded an imidazole ring fragment bearing the radiolabel and an amino acid residue derived from the proteins. This fragment has been identified as carboxymethylcysteine by co-chromatography of the amino acid and its dansyl derivative with known standards under a variety of conditions. The carboxymethylcysteine was estimated to represent at least 15% of the radioactivity derived from the protein-bound adducts and provides unequivocal evidence that nucleophilic attack by protein cysteine thiols occurred at the 2-methylene position of ronidazole.


Chemico-Biological Interactions | 1984

Drug residue formation from ronidazole, a 5-nitroimidazole. VII. Comparison of protein-bound products formed in vitro and in vivo

Gerald T. Miwa; Raul F. Alvaro; John S. Walsh; Regina W. Wang; Anthony Y.H. Lu

In vivo experiments were conducted with ronidazole radiolabelled in the 2-14CH2-, 4,5-14C-, N-14CH3- and 4-3H-positions. The hepatic protein-bound residues, assessed by the radioactivity of exhaustively washed protein samples, were independent of the radiolabel position and occurred with 4-3H loss (greater than 80%) in excellent agreement to previous results obtained in vitro with anaerobic incubations of liver microsomes (Miwa et al., Chem. Biol. Interact., 41 (1982) 297). HPLC analysis of acid hydrolyzed in vivo protein-bound residues, obtained from [2-14CH2] ronidazole, produced a radiochromatographic profile which was virtually identical to that obtained from a similarly treated in vitro sample. Moreover, almost quantitative (76-96%) liberation of radiolabelled methylamine was obtained from hydrolysates of in vivo and in vitro residue samples formed from [N-14CH3] ronidazole. With 4,5-ring labeled ronidazole the distribution of total radioactivity of the protein hydrolysate on cation exchange resin and the fraction of the residue recovered as oxalic acid were nearly identical for the in vivo and in vitro products. We interpret these data to indicate that ronidazole alkylates proteins with retention of most of the carbon framework of the molecule, in vivo. It is also concluded that the in vitro model, previously used to examine the mechanism of protein alkylation, accurately reflects the salient process initially occurring in the intact animal during the formation of protein-bound residues of this drug.


Toxicologic Pathology | 1995

The Role of Drug Metabolism in Drug Discovery: A Case Study in the Selection of an Oxytocin Receptor Antagonist for Development

Shuet-Ling L. Chiu; A. Thompson; Stella H. Vincent; Raul F. Alvaro; Su-Er W. Huskey; Ralph A. Stearns; Douglas J. Pettibone

Drug discovery is a process involving multiple disciplines and interests. During the research phase of drug discovery, usually a large number of compounds are evaluated for biological activity and toxicological potential in animal species. Various types of problems with respect to pharmacodynamics, pharmacokinetics, and toxicity are commonly encountered at this stage. Drug metabolism, as a discipline participating in a drug discovery team, can play an important role in identifying factors underlying the problems, facilitate the optimal selection of compounds for further development, provide information on metabolites for possible improvement in drug design, and contribute to the identification of the appropriate animal species for subsequent toxicity testing. During the process of evaluating oxytocin receptor antagonists for further development for treatment of preterm labor, in vivo and in vitro drug metabolism studies conducted in rats, dogs, and monkeys contributed to the selection of L-368,899 as the development candidate on the basis of pharmacokinetic and metabolism observations. The presence of active N-demethylated metabolites of two other equipotent compounds in rats and dogs was found to be the major factor responsible for the discrepancy between oral bioavailability and efficacies observed for these 2 compounds. For L-368,899, a compound that demonstrated 20-40% oral bioavailability in rats, dogs, and chimpanzees, extensive first-pass metabolism rather than absorption was determined as the major factor responsible for the poor bioavailability (< 1%) in rhesus monkeys. In vitro metabolism studies with hepatic microsomes from rats, dogs, monkeys, and humans substantiated the conclusion that the rate of hepatic metabolism of L-368,899 in monkeys is faster than in the other species.


Chemico-Biological Interactions | 1983

Drug residue formation from ronidazole, a 5-nitroimidazole. IV. The role of the microflora

Frank J. Wolf; Raul F. Alvaro; Karen M. Fiorentini; M. Green; Anthony Y.H. Lu; Gerald T. Miwa; Peter G. Wislocki; R.T. Koch; M.A. McLafferty; P. Goldman

When radioactive 1-methyl-5-nitroimidazole-2-methanol carbamate, ronidazole, labeled at the 4,5-ring positions was administered orally to germ-free and conventional rats, a much larger fraction of the radioactivity was excreted in the feces of the conventional animals. Determination of the total radioactive residues present in the carcass, blood, plasma, liver, fat and kidney 5 days after dosing indicated that the carcass of the germ-free animals contained a greater quantity of residue than that of conventional rats. On the other hand, the blood of the conventional animals contained a much higher level of radioactivity than that of the germ-free animals. These results show that while the microflora influence the distribution of the drug their presence is not obligating for the formation of persistent tissue residues in rats dosed with ronidazole.


Food and Chemical Toxicology | 1982

Problems associated with the use of cycloheximide to distinguish between animal drug residues bound to protein and those incorporated into protein

Peter G. Wislocki; Karen M. Fiorentini; Raul F. Alvaro; Anthony Y.H. Lu; Frank J. Wolf

The user of cycloheximide to distinguish between covalently-bound drug residues in animals and residues due to the incorporation of drug fragments into endogenous molecules was explored. The results indicated that cycloheximide prevented the absorption of both glycine and ronidazole from the gastro-intestinal tract, an effect that complicates its use in the characterization of drug residues in animals.


Journal of Chromatography B: Biomedical Sciences and Applications | 1992

Determination of enantiomeric concentrations of a 2,5-diaryltetrahydrofuran (L-668,750), a platelet-activating factor receptor antagonist, in rat plasma using a chiral α1-acid glycoprotein high-performance liquid chromatographic column

Raul F. Alvaro; Avery Rosegay; Shuet-Hing Lee Chiu

Racemic sulfonylated 2,5-diaryltetrahydrofuran [L-668,750, (+-)-trans-2-[3-methoxy-5-(2-hydroxy)ethylsulfonyl-4-n-propoxy]-p henyl-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran, I] is a potent, specific and orally active platelet-activating factor (PAF) receptor antagonist. Its (-)-(2S,5S) enantiomer [L-680,573, (S)-I] exhibited higher PAF antagonistic potency than the (+)-(2R,5R) enantiomer [L-680,574, (R)-I] in vitro and in animal models. For assay of drug concentrations in plasma of rats dosed intravenously or orally with tritium-labeled I, we have developed a high-performance liquid chromatographic (HPLC) method which directly resolved the two enantiomers. The column contained alpha 1-acid glycoprotein as the chiral stationary phase and was eluted with phosphate buffer, methanol and ethanol at neutral pH. The concentration of each enantiomer in the plasma was then determined by reverse isotope dilution assay. Results showed that the plasma clearance rate of the more potent (S)-I enantiomer was more than ten-fold faster than that of the (R)-I enantiomer; the enantioselective clearance resulted in nearly ten-fold higher concentrations of the latter in plasma at all time points regardless of the dosing route. This paper describes the HPLC chiral resolution method and its application in plasma analysis.

Researchain Logo
Decentralizing Knowledge