Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravi Prakash Reddy Nanga is active.

Publication


Featured researches published by Ravi Prakash Reddy Nanga.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity

Jung Suk Choi; Joseph J. Braymer; Ravi Prakash Reddy Nanga; Ayyalusamy Ramamoorthy; Mi Hee Lim

The accumulation of metal ions and amyloid-β (Aβ) aggregates found in the brain of patients with Alzheimer’s disease (AD) has been suggested to be involved in AD pathogenesis. To investigate metal-Aβ-associated pathways in AD, development of chemical tools to target metal-Aβ species is desired. Only a few efforts, however, have been reported. Here, we report bifunctional small molecules, N-(pyridin-2-ylmethyl)aniline (L2-a) and N1,N1-dimethyl-N4-(pyridin-2-ylmethyl)benzene-1,4-diamine (L2-b) that can interact with both metal ions and Aβ species, as determined by spectroscopic methods including high-resolution NMR spectroscopy. Using the bifunctional compound L2-b, metal-induced Aβ aggregation and neurotoxicity were modulated in vitro as well as in human neuroblastoma cells. Furthermore, treatment of human AD brain tissue homogenates containing metal ions and Aβ species with L2-b showed disassembly of Aβ aggregates. Therefore, our studies presented herein demonstrate the value of bifunctional compounds as chemical tools for investigating metal-Aβ-associated events and their mechanisms in the development and pathogenesis of AD and as potential therapeutics.


Biochimica et Biophysica Acta | 2011

Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment.

Ravi Prakash Reddy Nanga; Jeffrey R. Brender; Subramanian Vivekanandan; Ayyalusamy Ramamoorthy

Human islet amyloid polypeptide is a hormone coexpressed with insulin by pancreatic beta-cells. For reasons not clearly understood, hIAPP aggregates in type II diabetics to form oligomers that interfere with beta-cell function, eventually leading to the loss of insulin production. The cellular membrane catalyzes the formation of amyloid deposits and is a target of amyloid toxicity through disruption of the membranes structural integrity. Therefore, there is considerable current interest in solving the 3D structure of this peptide in a membrane environment. NMR experiments could not be directly utilized in lipid bilayers due to the rapid aggregation of the peptide. To overcome this difficulty, we have solved the structure of the naturally occurring peptide in detergent micelles at a neutral pH. The structure has an overall kinked helix motif, with residues 7-17 and 21-28 in a helical conformation, and with a 3(10) helix from Gly 33-Asn 35. In addition, the angle between the N- and C-terminal helices is constrained to 85°. The greater helical content of human IAPP in the amidated versus free acid form is likely to play a role in its aggregation and membrane disruptive activity.


Journal of the American Chemical Society | 2010

Role of zinc in human islet amyloid polypeptide aggregation

Jeffrey R. Brender; Kevin Hartman; Ravi Prakash Reddy Nanga; Nataliya Popovych; Roberto de la Salud Bea; Subramanian Vivekanandan; E. Neil G. Marsh; Ayyalusamy Ramamoorthy

Human Islet Amyloid Polypeptide (hIAPP) is a highly amyloidogenic protein found in islet cells of patients with type II diabetes. Because hIAPP is highly toxic to beta-cells under certain conditions, it has been proposed that hIAPP is linked to the loss of beta-cells and insulin secretion in type II diabetics. One of the interesting questions surrounding this peptide is how the toxic and aggregation prone hIAPP peptide can be maintained in a safe state at the high concentrations that are found in the secretory granule where it is stored. We show here zinc, which is found at millimolar concentrations in the secretory granule, significantly inhibits hIAPP amyloid fibrillogenesis at concentrations similar to those found in the extracellular environment. Zinc has a dual effect on hIAPP fibrillogenesis: it increases the lag-time for fiber formation and decreases the rate of addition of hIAPP to existing fibers at lower concentrations, while having the opposite effect at higher concentrations. Experiments at an acidic pH which partially neutralizes the change in charge upon zinc binding show inhibition is largely due to an electrostatic effect at His18. High-resolution structures of hIAPP determined from NMR experiments confirm zinc binding to His18 and indicate zinc induces localized disruption of the secondary structure of IAPP in the vicinity of His18 of a putative helical intermediate of IAPP. The inhibition of the formation of aggregated and toxic forms of hIAPP by zinc provides a possible mechanism between the recent discovery of linkage between deleterious mutations in the SLC30A8 zinc transporter, which transports zinc into the secretory granule, and type II diabetes.


Biochemistry | 2008

Structures of Rat and Human Islet Amyloid Polypeptide IAPP1−19 in Micelles by NMR Spectroscopy†

Ravi Prakash Reddy Nanga; Jeffrey R. Brender; Gianluigi Veglia; Ayyalusamy Ramamoorthy

Disruption of the cellular membrane by the amyloidogenic peptide IAPP (or amylin) has been implicated in beta-cell death during type 2 diabetes. While the structure of the mostly inert fibrillar form of IAPP has been investigated, the structural details of the highly toxic prefibrillar membrane-bound states of IAPP have been elusive. A recent study showed that a fragment of IAPP (residues 1-19) induces membrane disruption to a similar extent as the full-length peptide. However, unlike the full-length IAPP peptide, IAPP(1-19) is conformationally stable in an alpha-helical conformation when bound to the membrane. In vivo and in vitro measurements of membrane disruption indicate the rat version of IAPP(1-19), despite differing from hIAPP(1-19) by the single substitution of Arg18 for His18, is significantly less toxic than hIAPP(1-19), in agreement with the low toxicity of the full-length rat IAPP peptide. To investigate the origin of this difference at the atomic level, we have solved the structures of the human and rat IAPP(1-19) peptides in DPC micelles. While both rat and human IAPP(1-19) fold into similar mostly alpha-helical structures in micelles, paramagnetic quenching NMR experiments indicate a significant difference in the membrane orientation of hIAPP(1-19) and rIAPP(1-19). At pH 7.3, the more toxic hIAPP(1-19) peptide is buried deeper within the micelle, while the less toxic rIAPP(1-19) peptide is located at the surface of the micelle. Deprotonating H18 in hIAPP(1-19) reorients the peptide to the surface of the micelle. This change in orientation is in agreement with the significantly reduced ability of hIAPP(1-19) to cause membrane disruption at pH 6.0. This difference in peptide topology in the membrane may correspond to similar topology differences for the full-length human and rat IAPP peptides, with the toxic human IAPP peptide adopting a transmembrane orientation and the nontoxic rat IAPP peptide bound to the surface of the membrane.


Journal of the American Chemical Society | 2009

Three-Dimensional Structure and Orientation of Rat Islet Amyloid Polypeptide Protein in a Membrane Environment by Solution NMR Spectroscopy

Ravi Prakash Reddy Nanga; Jeffrey R. Brender; Kevin Hartman; Vivekanandan Subramanian; Ayyalusamy Ramamoorthy

Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide hormone associated with glucose metabolism that is cosecreted with insulin by beta-cells in the pancreas. Since human IAPP is a highly amyloidogenic peptide, it has been suggested that the formation of IAPP amyloid fibers is responsible for the death of beta-cells during the early stages of type II diabetes. It has been hypothesized that transient membrane-bound alpha-helical structures of human IAPP are precursors to the formation of these amyloid deposits. On the other hand, rat IAPP forms transient alpha-helical structures but does not progress further to form amyloid fibrils. To understand the nature of this intermediate state and the difference in toxicity between the rat and human versions of IAPP, we have solved the high-resolution structure of rat IAPP in the membrane-mimicking detergent micelles composed of dodecylphosphocholine. The structure is characterized by a helical region spanning the residues A5 to S23 and a disordered C-terminus. A distortion in the helix is seen at R18 and S19 that may be involved in receptor binding. Paramagnetic quenching NMR experiments indicate that rat IAPP is bound on the surface of the micelle, in agreement with other nontoxic forms of IAPP. A comparison to the detergent-bound structures of other IAPP variants indicates that the N-terminal region may play a crucial role in the self-association and toxicity of IAPP by controlling access to the putative dimerization interface on the hydrophobic face of the amphipathic helix.


Magnetic Resonance in Medicine | 2014

Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer

Feliks Kogan; Mohammad Haris; Anup Singh; Kejia Cai; Catherine DeBrosse; Ravi Prakash Reddy Nanga; Hari Hariharan; Ravinder Reddy

To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.


NMR in Biomedicine | 2012

Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI

Mohammad Haris; Ravi Prakash Reddy Nanga; Anup Singh; Kejia Cai; Feliks Kogan; Hari Hariharan; Ravinder Reddy

Creatine (Cr), phosphocreatine (PCr) and adenosine‐5‐triphosphate (ATP) are major metabolites of the enzyme creatine kinase (CK). The exchange rate of amine protons of CK metabolites at physiological conditions has been limited. In the current study, the exchange rate and logarithmic dissociation constant (pKa) of amine protons of CK metabolites were calculated. Further, the chemical exchange saturation transfer effect (CEST) of amine protons of CK metabolites with bulk water was explored. At physiological temperature and pH, the exchange rate of amine protons in Cr was found to be 7–8 times higher than PCr and ATP. A higher exchange rate in Cr was associated with lower pKa value, suggesting faster dissociation of its amine protons compared to PCr and ATP. CEST MR imaging of these metabolites in vitro in phantoms displayed predominant CEST contrast from Cr and negligible contribution from PCr and ATP with the saturation pulse parameters used in the current study. These results provide a new method to perform high‐resolution proton imaging of Cr without contamination from PCr. Potential applications of these finding are discussed. Copyright


Journal of Molecular Biology | 2011

A Two Site Mechanism for the Inhibition of IAPP Amyloidogenesis by Zinc

Samer Salamekh; Jeffrey R. Brender; Suk Joon Hyung; Ravi Prakash Reddy Nanga; Subramanian Vivekanandan; Brandon T. Ruotolo; Ayyalusamy Ramamoorthy

Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic protein co-secreted with insulin in response to glucose levels. The formation of hIAPP amyloid plaques near islet cells has been linked to the death of insulin-secreting β-cells in humans and the progression of type II diabetes. Since both healthy individuals and those with type II diabetes produce and secrete hIAPP, it is reasonable to look for factors involved in storing hIAPP and preventing amyloidosis. We have previously shown that zinc inhibits the formation of insoluble amyloid plaques of hIAPP; however, there remains significant ambiguity in the underlying mechanisms. In this study, we show that zinc binds unaggregated hIAPP at micromolar concentrations similar to those found in the extracellular environment. By contrast, the fibrillar amyloid form of hIAPP has low affinity for zinc. The binding stoichiometry obtained from isothermal titration calorimetry experiments indicates that zinc favors the formation of hIAPP hexamers. High-resolution NMR structures of hIAPP bound to zinc reveal changes in the electron environment along residues that would be located along one face of the amphipathic hIAPP α-helix proposed as an intermediate for amyloid formation. Results from electrospray ionization mass spectroscopy investigations showed that a single zinc atom is predominantly bound to hIAPP and revealed that zinc inhibits the formation of the dimer. At higher concentrations of zinc, a second zinc atom binds to hIAPP, suggesting the presence of a low-affinity secondary binding site. Combined, these results suggest that zinc promotes the formation of oligomers while creating an energetic barrier for the formation of amyloid fibers.


Journal of Biological Chemistry | 2013

A Model of the Membrane-bound Cytochrome b5-Cytochrome P450 Complex from NMR and Mutagenesis Data

Shivani Ahuja; Nicole Jahr; Sang Choul Im; Subramanian Vivekanandan; Nataliya Popovych; Stéphanie V. Le Clair; Rui Huang; Ronald Soong; Kazutoshi Yamamoto; Ravi Prakash Reddy Nanga; Angela Bridges; Lucy Waskell; Ayyalusamy Ramamoorthy

Background: cytb5 modulates catalysis performed by cytsP450, in vivo and in vitro. Results: The structure of full-length cytb5 was solved by NMR, and the cytP450-binding site on cytb5 was identified by mutagenesis and NMR. Conclusion: A model of the cytb5-cytP450 complex is presented. Addition of a substrate strengthens the cytb5-cytP450 interaction. Significance: The cytb5-cytP450 complex structure will help unravel the mechanism by which cytb5 regulates catalysis by cytP450. Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.


Biochimica et Biophysica Acta | 2010

Cholesterol reduces pardaxin's dynamics-a barrel-stave mechanism of membrane disruption investigated by solid-state NMR.

Ayyalusamy Ramamoorthy; Dong Kuk Lee; Tennaru Narasimhaswamy; Ravi Prakash Reddy Nanga

While high-resolution 3D structures reveal the locations of all atoms in a molecule, it is the dynamics that correlates the structure with the function of a biological molecule. The complete characterization of dynamics of a membrane protein is in general complex. In this study, we report the influence of dynamics on the channel-forming function of pardaxin using chemical shifts and dipolar couplings measured from 2D broadband-PISEMA experiments on mechanically aligned phospholipids bilayers. Pardaxin is a 33-residue antimicrobial peptide originally isolated from the Red Sea Moses sole, Pardachirus marmoratus, which functions via either a carpet-type or barrel-stave mechanism depending on the membrane composition. Our results reveal that the presence of cholesterol significantly reduces the backbone motion and the tilt angle of the C-terminal amphipathic helix of pardaxin. In addition, a correlation between the dynamics-induced heterogeneity in the tilt of the C-terminal helix and the membrane disrupting activity of pardaxin by the barrel-stave mechanism is established. This correlation is in excellent agreement with the absence of hemolytic activity for the derivatives of pardaxin. These results explain the role of cholesterol in the selectivity of the broad-spectrum of antimicrobial activities of pardaxin.

Collaboration


Dive into the Ravi Prakash Reddy Nanga's collaboration.

Top Co-Authors

Avatar

Hari Hariharan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ravinder Reddy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anup Singh

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kejia Cai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Elliott

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John A. Detre

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge