Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravindra Kodali is active.

Publication


Featured researches published by Ravindra Kodali.


Nature Structural & Molecular Biology | 2009

Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism

Ashwani K. Thakur; Murali Jayaraman; Rakesh Mishra; Monika Thakur; Veronique M. Chellgren; In-Ja L. Byeon; Dalaver H. Anjum; Ravindra Kodali; Trevor P. Creamer; James F. Conway; Angela M. Gronenborn; Ronald Wetzel

Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17-amino-acid flanking sequence (HTTNT) N-terminal to the polyQ in the toxic huntingtin exon 1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation, the HTTNT peptide is a compact coil that resists aggregation. When polyQ is fused to this sequence, it induces in HTTNT, in a repeat-length dependent fashion, a more extended conformation that greatly enhances its aggregation into globular oligomers with HTTNT cores and exposed polyQ. In a second step, a new, amyloid-like aggregate is formed with a core composed of both HTTNT and polyQ. The results indicate unprecedented complexity in how primary sequence controls aggregation within a substantially disordered peptide and have implications for the molecular mechanism of Huntingtons disease.


Neuron | 2009

Serines 13 and 16 Are Critical Determinants of Full-length Human Mutant Huntingtin-Induced Disease Pathogenesis in HD Mice

Xiaofeng Gu; Erin R. Greiner; Rakesh Mishra; Ravindra Kodali; Alexander P. Osmand; Steven Finkbeiner; Joan S. Steffan; Leslie M. Thompson; Ronald Wetzel; X. William Yang

The N-terminal 17 amino acids of huntingtin (NT17) can be phosphorylated on serines 13 and 16; however, the significance of these modifications in Huntingtons disease pathogenesis remains unknown. In this study, we developed BAC transgenic mice expressing full-length mutant huntingtin (fl-mhtt) with serines 13 and 16 mutated to either aspartate (phosphomimetic or SD) or alanine (phosphoresistant or SA). Both mutant proteins preserve the essential function of huntingtin in rescuing knockout mouse phenotypes. However, fl-mhtt-induced disease pathogenesis, including motor and psychiatric-like behavioral deficits, mhtt aggregation, and selective neurodegeneration are abolished in SD but preserved in SA mice. Moreover, modification of these serines in expanded repeat huntingtin peptides modulates aggregation and amyloid fibril formation in vitro. Together, our findings demonstrate that serines 13 and 16 are critical determinants of fl-mhtt-induced disease pathogenesis in vivo, supporting the targeting of huntingtin NT17 domain and its modifications in HD therapy.


Journal of Molecular Biology | 2010

Aβ(1–40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated

Ravindra Kodali; Angela Williams; Saketh Chemuru; Ronald Wetzel

The ability of a single polypeptide sequence to grow into multiple stable amyloid fibrils sets these aggregates apart from most native globular proteins. The existence of multiple amyloid forms is the basis for strain effects in yeast prion biology, and might contribute to variations in Alzheimers disease pathology. However, the structural basis for amyloid polymorphism is poorly understood. We report here five structurally distinct fibrillar aggregates of the Alzheimers plaque peptide Abeta(1-40), as well as a non-fibrillar aggregate induced by Zn(2+). Each of these conformational forms exhibits a unique profile of physical properties, and all the fibrillar forms breed true in elongation reactions under a common set of growth conditions. Consistent with their defining cross-beta structure, we find that in this series the amyloid fibrils containing more extensive beta-sheet exhibit greater stability. At the same time, side chain packing outside of the beta-sheet regions contributes to stability, and to differences of stability between polymorphic forms. Stability comparison is facilitated by the unique feature that the free energy of the monomer (equivalent to the unfolded state in a protein folding reaction) does not vary, and hence can be ignored, in the comparison of DeltaG degrees of elongation values for each polymorphic fibril obtained under a single set of conditions.


Nature Structural & Molecular Biology | 2011

Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent

Karunakar Kar; Murali Jayaraman; Bankanidhi Sahoo; Ravindra Kodali; Ronald Wetzel

Because polyglutamine (polyQ) aggregate formation has been implicated as playing an important role in expanded CAG repeat diseases, it is important to understand the biophysics underlying the initiation of aggregation. Previously, we showed that relatively long polyQ peptides aggregate by nucleated growth polymerization and a monomeric critical nucleus. We show here that over a short range of repeat lengths, from Q23 to Q26, the size of the critical nucleus for aggregation increases from monomeric to dimeric to tetrameric. This variation in nucleus size suggests a common duplex antiparallel β-sheet framework for the nucleus, and it further supports the feasibility of an organized monomeric aggregation nucleus for longer polyQ repeat peptides. The data also suggest that a change in the size of aggregation nuclei may have a role in the pathogenicity of polyQ expansion in this series of familial neurodegenerative diseases.


Journal of Molecular Biology | 2012

Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.

Murali Jayaraman; Ravindra Kodali; Bankanidhi Sahoo; Ashwani K. Thakur; Anand Mayasundari; Rakesh Mishra; Cynthia B. Peterson; Ronald Wetzel

The 17-amino-acid N-terminal segment (htt(NT)) that leads into the polyglutamine (polyQ) segment in the Huntingtons disease protein huntingtin (htt) dramatically increases aggregation rates and changes the aggregation mechanism, compared to a simple polyQ peptide of similar length. With polyQ segments near or above the pathological repeat length threshold of about 37, aggregation of htt N-terminal fragments is so rapid that it is difficult to tease out mechanistic details. We describe here the use of very short polyQ repeat lengths in htt N-terminal fragments to slow this disease-associated aggregation. Although all of these peptides, in addition to htt(NT) itself, form α-helix-rich oligomeric intermediates, only peptides with Q(N) of eight or longer mature into amyloid-like aggregates, doing so by a slow increase in β-structure. Concentration-dependent circular dichroism and analytical ultracentrifugation suggest that the htt(NT) sequence, with or without added glutamine residues, exists in solution as an equilibrium between disordered monomer and α-helical tetramer. Higher order, α-helix rich oligomers appear to be built up via these tetramers. However, only htt(NT)Q(N) peptides with N=8 or more undergo conversion into polyQ β-sheet aggregates. These final amyloid-like aggregates not only feature the expected high β-sheet content but also retain an element of solvent-exposed α-helix. The α-helix-rich oligomeric intermediates appear to be both on- and off-pathway, with some oligomers serving as the pool from within which nuclei emerge, while those that fail to undergo amyloid nucleation serve as a reservoir for release of monomers to support fibril elongation. Based on a regular pattern of multimers observed in analytical ultracentrifugation, and a concentration dependence of α-helix formation in CD spectroscopy, it is likely that these oligomers assemble via a four-helix assembly unit. PolyQ expansion in these peptides appears to enhance the rates of both oligomer formation and nucleation from within the oligomer population, by structural mechanisms that remain unclear.


Journal of the American Chemical Society | 2011

The Aggregation-Enhancing Huntingtin N-Terminus Is Helical in Amyloid Fibrils

V. N. Sivanandam; Murali Jayaraman; Cody L. Hoop; Ravindra Kodali; Ronald Wetzel; Patrick C.A. van der Wel

The 17-residue N-terminus (htt(NT)) directly flanking the polyQ sequence in huntingtin (htt) N-terminal fragments plays a crucial role in initiating and accelerating the aggregation process that is associated with Huntingtons disease pathogenesis. Here we report on magic-angle-spinning solid-state NMR studies of the amyloid-like aggregates of an htt N-terminal fragment. We find that the polyQ portion of this peptide exists in a rigid, dehydrated amyloid core that is structurally similar to simpler polyQ fibrils and may contain antiparallel β-sheets. In contrast, the htt(NT) sequence in the aggregates is composed in part of a well-defined helix, which likely also exists in early oligomeric aggregates. Further NMR experiments demonstrate that the N-terminal helical segment displays increased dynamics and water exposure. Given its specific contribution to the initiation, rate, and mechanism of fibril formation, the helical nature of htt(NT) and its apparent lack of effect on the polyQ fibril core structure seem surprising. The results provide new details about these disease-associated aggregates and also provide a clear example of an amino acid sequence that greatly enhances the rate of amyloid formation while itself not taking part in the amyloid structure. There is an interesting mechanistic analogy to recent reports pointing out the early-stage contributions of transient intermolecular helix-helix interactions in the aggregation behavior of various other amyloid fibrils.


Journal of Biological Chemistry | 2010

Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS1ΔE9 mice

Iliya Lefterov; Nicholas F. Fitz; Andrea A. Cronican; Allison Fogg; Preslav Lefterov; Ravindra Kodali; Ronald Wetzel; Radosveta Koldamova

A hallmark of Alzheimer disease (AD) is the deposition of amyloid β (Aβ) in brain parenchyma and cerebral blood vessels, accompanied by cognitive decline. Previously, we showed that human apolipoprotein A-I (apoA-I) decreases Aβ40 aggregation and toxicity. Here we demonstrate that apoA-I in lipidated or non-lipidated form prevents the formation of high molecular weight aggregates of Aβ42 and decreases Aβ42 toxicity in primary brain cells. To determine the effects of apoA-I on AD phenotype in vivo, we crossed APP/PS1ΔE9 to apoA-IKO mice. Using a Morris water maze, we demonstrate that the deletion of mouse Apoa-I exacerbates memory deficits in APP/PS1ΔE9 mice. Further characterization of APP/PS1ΔE9/apoA-IKO mice showed that apoA-I deficiency did not affect amyloid precursor protein processing, soluble Aβ oligomer levels, Aβ plaque load, or levels of insoluble Aβ in brain parenchyma. To examine the effect of Apoa-I deletion on cerebral amyloid angiopathy, we measured insoluble Aβ isolated from cerebral blood vessels. Our data show that in APP/PS1ΔE9/apoA-IKO mice, insoluble Aβ40 is increased more than 10-fold, and Aβ42 is increased 1.5-fold. The increased levels of deposited amyloid in the vessels of cortices and hippocampi of APP/PS1ΔE9/apoA-IKO mice, measured by X-34 staining, confirmed the results. Finally, we demonstrate that lipidated and non-lipidated apoA-I significantly decreased Aβ toxicity against brain vascular smooth muscle cells. We conclude that lack of apoA-I aggravates the memory deficits in APP/PS1ΔE9 mice in parallel to significantly increased cerebral amyloid angiopathy.


Journal of Molecular Biology | 2013

β-Hairpin-Mediated Nucleation of Polyglutamine Amyloid Formation

Karunakar Kar; Cody L. Hoop; Kenneth W. Drombosky; Matthew A. Baker; Ravindra Kodali; Irene Arduini; Patrick C.A. van der Wel; W. Seth Horne; Ronald Wetzel

The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntingtons disease. Here, we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (tryptophan zipper, disulfide, d-Pro-Gly, Coulombic attraction, l-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n=4 for a simple, unbroken Q23 sequence to approximate unitary n values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of solid-state NMR (13)C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn values remain quite low (~10(-)(10)) and there is no evidence for significant enhancement of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases.


Journal of Molecular Biology | 2012

Inhibiting the nucleation of amyloid structure in a huntingtin fragment by targeting α-helix-rich oligomeric intermediates.

Rakesh Mishra; Murali Jayaraman; Bartholomew P. Roland; Elizabeth Landrum; Timothy Fullam; Ravindra Kodali; Ashwani K. Thakur; Irene Arduini; Ronald Wetzel

Although oligomeric intermediates are transiently formed in almost all known amyloid assembly reactions, their mechanistic roles are poorly understood. Recently, we demonstrated a critical role for the 17-amino-acid N-terminus (htt(NT) segment) of huntingtin (htt) in the oligomer-mediated amyloid assembly of htt N-terminal fragments. In this mechanism, the htt(NT) segment forms the α-helix-rich core of the oligomers, leaving much of the polyglutamine (polyQ) segment disordered and solvent-exposed. Nucleation of amyloid structure occurs within this local high concentration of disordered polyQ. Here we demonstrate the kinetic importance of htt(NT) self-assembly by describing inhibitory htt(NT)-containing peptides that appear to work by targeting nucleation within the oligomer fraction. These molecules inhibit amyloid nucleation by forming mixed oligomers with the htt(NT) domains of polyQ-containing htt N-terminal fragments. In one class of inhibitors, nucleation is passively suppressed due to the reduced local concentration of polyQ within the mixed oligomer. In the other class, nucleation is actively suppressed by a proline-rich polyQ segment covalently attached to htt(NT). Studies with D-amino acid and scrambled sequence versions of htt(NT) suggest that inhibition activity is strongly linked to the propensity of inhibitory peptides to make amphipathic α-helices. Htt(NT) derivatives with C-terminal cell-penetrating peptide segments also exhibit excellent inhibitory activity. The htt(NT)-based peptides described here, especially those with protease-resistant d-amino acids and/or with cell-penetrating sequences, may prove useful as lead therapeutics for inhibiting the nucleation of amyloid formation in Huntingtons disease.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cyclopentenone prostaglandin-induced unfolding and aggregation of the Parkinson disease-associated UCH-L1

Leonardus M. I. Koharudin; Hao Liu; Roberto Di Maio; Ravindra Kodali; Steven H. Graham; Angela M. Gronenborn

Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) has been implicated in Parkinson’s disease (PD) and is present in neurofibrillary tangles or Lewy bodies. However, the molecular basis for UCH-L1s involvement in proteinacious fibril formation is still elusive, especially in regard to the pathogenicity of the I93M mutation. Here we show that modification of UCH-L1 by cyclopentenone prostaglandins causes unfolding and aggregation. A single thiol group on Cys152 reacts with the α,β-unsaturated carbonyl center in the cyclopentenone ring of prostaglandins, resulting in a covalent adduct. We also show that the PD-associated I93M mutant of UCH-L1 is well-folded, structurally similar to the wild-type protein, and aggregates upon conjugation by cyclopentenone prostaglandins. Our findings suggest a possible mechanistic link between UCH-L1 modification by cyclopentenone prostaglandins and the etiology of neurodegeneration.

Collaboration


Dive into the Ravindra Kodali's collaboration.

Top Co-Authors

Avatar

Ronald Wetzel

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cody L. Hoop

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Rakesh Mishra

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karunakar Kar

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia S. Hinck

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge