Raymond Mawson
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raymond Mawson.
Ultrasonics Sonochemistry | 2009
Jenny Yue Zuo; Kai Knoerzer; Raymond Mawson; Sandra E. Kentish; Muthupandian Ashokkumar
The effect of sonication on the pasting properties of waxy rice starch solutions (5 wt%) was investigated. It has been found that the functionality of starch granules was significantly influenced by the length of sonication and the solution temperature. A comparison of the pasting behaviour showed that the peak and final viscosities of the starch dispersions sonicated at temperatures near the onset temperature of gelatinisation were lower than those of the non-sonicated dispersions. The particle size measurements showed that the size of the heated and sonicated granules were smaller than that of the heated non-sonicated starch granules. Scanning electron microscopy (SEM) observations showed that the starch granule surface was not affected by sonication, and the size exclusion chromatography did not show any reduction in the size of the starch molecules. Based on these observations, the change in the pasting behaviour is explained in terms of the solubilisation of the swollen starch granules and starch aggregates induced by sonication.
Ultrasonics Sonochemistry | 2011
Pablo Juliano; A. Kutter; L.J. Cheng; Piotr Swiergon; Raymond Mawson; Mary Ann Augustin
The effects of application of ultrasonic waves to recombined milk emulsions (3.5% fat, 7% total solids) and raw milk on fat destabilization and creaming were examined. Coarse and fine recombined emulsions (D[4,3]=9.3 μm and 2.7 μm, respectively) and raw milk (D[4,3]=4.9 μm) were subjected to ultrasound for 5 min at 35°C and 400 kHz or 1.6 MHz (using a single transducer) or 400 kHz (where the emulsion was sandwiched between two transducers). Creaming, as calculated from Turbiscan measurements, was more evident in the coarse recombined emulsion and raw milk compared to that of the recombined fine emulsion. Micrographs confirmed that there was flocculation and coalescence in creamed layer of emulsion. Coalescence was confirmed by particle size measurement. These results imply that ultrasound has potential to pre-dispose fat particles in milk emulsions to creaming in standing wave systems and in systems with inhomogeneous sound distributions.
Archive | 2011
Raymond Mawson; Mala Gamage; Netsanet Shiferaw Terefe; Kai Knoerzer
As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.
Ultrasonics Sonochemistry | 2013
Pablo Juliano; Sandra Temmel; Manoj Rout; Piotr Swiergon; Raymond Mawson; Kai Knoerzer
Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general.
Ultrasonics Sonochemistry | 2014
Thomas Leong; Linda Johansson; Pablo Juliano; Raymond Mawson; Sally L. McArthur; Richard Manasseh
The separation of milk fat from natural whole milk has been achieved by applying ultrasonic standing waves (1 MHz and/or 2 MHz) in a litre-scale (5L capacity) batch system. Various design parameters were tested such as power input level, process time, specific energy, transducer-reflector distance and the use of single and dual transducer set-ups. It was found that the efficacy of the treatment depended on the specific energy density input into the system. In this case, a plateau in fat concentration of ∼20% w/v was achieved in the creamed top layer after applying a minimum specific energy of 200 kJ/kg. In addition, the fat separation was enhanced by reducing the transducer reflector distance in the vessel, operating two transducers in a parallel set-up, or by increasing the duration of insonation, resulting in skimmed milk with a fat concentration as low as 1.7% (w/v) using raw milk after 20 min insonation. Dual mode operation with both transducers in parallel as close as 30 mm apart resulted in the fastest creaming and skimming in this study at ∼1.6 g fat/min.
Archive | 2011
Kamaljit Vilkhu; Richard Manasseh; Raymond Mawson; Muthupandian Ashokkumar
There are two general classes of effects that sound, and ultrasound in particular, can have on a fluid. First, very significant modifications to the nature of food and food ingredients can be due to the phenomena of bubble acoustics and cavitation. The applied sound oscillates bubbles in the fluid, creating intense forces at microscopic scales thus driving chemical changes. Second, the sound itself can cause the fluid to flow vigorously, both on a large scale and on a microscopic scale; furthermore, the sound can cause particles in the fluid to move relative to the fluid. These streaming phenomena can redistribute materials within food and food ingredients at both microscopic and macroscopic scales.
Ultrasonics Sonochemistry | 2014
Thomas Leong; Pablo Juliano; Linda Johansson; Raymond Mawson; Sally L. McArthur; Richard Manasseh
This study showed that temperature influences the rate of separation of fat from natural whole milk during application of ultrasonic standing waves. In this study, natural whole milk was sonicated at 600kHz (583W/L) or 1MHz (311W/L) with a starting bulk temperature of 5, 25, or 40°C. Comparisons on separation efficiency were performed with and without sonication. Sonication using 1MHz for 5min at 25°C was shown to be more effective for fat separation than the other conditions tested with and without ultrasound, resulting in a relative change from 3.5±0.06% (w/v) fat initially, of -52.3±2.3% (reduction to 1.6±0.07% (w/v) fat) in the skimmed milk layer and 184.8±33.2% (increase to 9.9±1.0% (w/v) fat) in the top layer, at an average skimming rate of ∼5g fat/min. A shift in the volume weighted mean diameter (D[4,3]) of the milk samples obtained from the top and bottom of between 8% and 10% relative to an initial sample D[4,3] value of 4.5±0.06μm was also achieved under these conditions. In general, faster fat separation was seen in natural milk when natural creaming occurred at room temperature and this separation trend was enhanced after the application of high frequency ultrasound.
Ultrasonics Sonochemistry | 2016
Linda Johansson; Tanoj Singh; Thomas Leong; Raymond Mawson; Sally L. McArthur; Richard Manasseh; Pablo Juliano
We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation.
Ultrasonics Sonochemistry | 2012
Li Day; Mi Xu; Sofia K. Øiseth; Raymond Mawson
The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching.
Ultrasonics Sonochemistry | 2014
Raymond Mawson; Manoj Rout; Gabriela Ripoll; Piotr Swiergon; Tanoj Singh; Kai Knoerzer; Pablo Juliano
The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1μm, 0.05μm, and 0.01μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be nanoparticulate in terms of the third dimension, this research suggests that there are no serious health implications resulting from the formation of nanoparticles under the evaluation conditions. Therefore, high frequency transducer plates can be safely operated in direct contact with foods. However, due to significant production of metallic micro-particulates, redesign of lower frequency sonotrodes and reaction chambers is advised to enable operation in various food processing direct-contact applications.
Collaboration
Dive into the Raymond Mawson's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs