Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond R. Crowe is active.

Publication


Featured researches published by Raymond R. Crowe.


American Journal of Human Genetics | 2003

Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia

Cathryn M. Lewis; Douglas F. Levinson; Lesley H. Wise; Lynn E. DeLisi; Richard E. Straub; Iiris Hovatta; Nigel Melville Williams; Sibylle G. Schwab; Ann E. Pulver; Stephen V. Faraone; Linda M. Brzustowicz; Charles A. Kaufmann; David L. Garver; Hugh Gurling; Eva Lindholm; Hilary Coon; Hans W. Moises; William Byerley; Sarah H. Shaw; Andrea Mesén; Robin Sherrington; F. Anthony O'Neill; Dermot Walsh; Kenneth S. Kendler; Jesper Ekelund; Tiina Paunio; Jouko Lönnqvist; Leena Peltonen; Michael Conlon O'Donovan; Michael John Owen

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bins average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.


Nature | 2009

Common variants on chromosome 6p22.1 are associated with schizophrenia

Jianxin Shi; Douglas F. Levinson; Jubao Duan; Alan R. Sanders; Yonglan Zheng; Itsik Pe'er; Frank Dudbridge; Peter Holmans; Alice S. Whittemore; Bryan J. Mowry; Ann Olincy; Farooq Amin; C. Robert Cloninger; Jeremy M. Silverman; Nancy G. Buccola; William Byerley; Donald W. Black; Raymond R. Crowe; Jorge R. Oksenberg; Daniel B. Mirel; Kenneth S. Kendler; Robert Freedman; Pablo V. Gejman

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5–1%, with high heritability (80–85%) and complex transmission. Recent studies implicate rare, large, high-penetrance copy number variants in some cases, but the genes or biological mechanisms that underlie susceptibility are not known. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended major histocompatibility complex region on chromosome 6. We carried out a genome-wide association study of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium and SGENE data sets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 (P = 9.54 × 10-9). This region includes a histone gene cluster and several immunity-related genes—possibly implicating aetiological mechanisms involving chromatin modification, transcriptional regulation, autoimmunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms.


American Journal of Medical Genetics | 1998

Genome-wide search for genes affecting the risk for alcohol dependence.

Theodore Reich; Howard J. Edenberg; Alison Goate; Jeff T. Williams; John P. Rice; Paul Van Eerdewegh; Tatiana Foroud; Victor Hesselbrock; Marc A. Schuckit; Kathleen K. Bucholz; Bernice Porjesz; Ting-Kai Li; P. Michael Conneally; John I. Nurnberger; Jay A. Tischfield; Raymond R. Crowe; C. Robert Cloninger; William Wu; Shantia Shears; Kristie Carr; Candice Crose; Chris Willig; Henri Begleiter

Alcohol dependence is a leading cause of morbidity and premature death. Several lines of evidence suggest a substantial genetic component to the risk for alcoholism: sibs of alcoholic probands have a 3-8 fold increased risk of also developing alcoholism, and twin heritability estimates of 50-60% are reported by contemporary studies of twins. We report on the results of a six-center collaborative study to identify susceptibility loci for alcohol dependence. A genome-wide screen examined 291 markers in 987 individuals from 105 families. Two-point and multipoint nonparametric linkage analyses were performed to detect susceptibility loci for alcohol dependence. Multipoint methods provided the strongest suggestions of linkage with susceptibility loci for alcohol dependence on chromosomes 1 and 7, and more modest evidence for a locus on chromosome 2. In addition, there was suggestive evidence for a protective locus on chromosome 4 near the alcohol dehydrogenase genes, for which protective effects have been reported in Asian populations.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus.

Bernice Porjesz; Laura Almasy; Howard J. Edenberg; Kongming Wang; David B. Chorlian; Tatiana Foroud; Alison Goate; John P. Rice; Sean O'Connor; John W. Rohrbaugh; Samuel Kuperman; Lance O. Bauer; Raymond R. Crowe; Marc A. Schuckit; Victor Hesselbrock; P. Michael Conneally; Jay A. Tischfield; Ting-Kai Li; Theodore Reich; Henri Begleiter

Human brain oscillations represent important features of information processing and are highly heritable. A common feature of beta oscillations (13–28 Hz) is the critical involvement of networks of inhibitory interneurons as pacemakers, gated by γ-aminobutyric acid type A (GABAA) action. Advances in molecular and statistical genetics permit examination of quantitative traits such as the beta frequency of the human electroencephalogram in conjunction with DNA markers. We report a significant linkage and linkage disequilibrium between beta frequency and a set of GABAA receptor genes. Uncovering the genes influencing brain oscillations provides a better understanding of the neural function involved in information processing.


Behavior Genetics | 1983

Evidence for gene-environment interaction in the development of adolescent antisocial behavior

Colleen A. Cain; Raymond R. Crowe

Data from three adoption studies are used to test for gene-environment interaction in the development of adolescent antisocial behaviors. Results indicate significant increases in antisocial behaviors when an adoptee has both a genetic factor and an adverse environmental factor present. The increase in number of antisocial behaviors due to both genetic and environmental factors acting together is far greater than the predicted increase from either factor acting alone.


American Journal of Medical Genetics | 1996

A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

Michael Gill; Homero Vallada; David Collier; Pak Sham; Peter Alan Holmans; Robin M. Murray; Peter McGuffin; Shinichiro Nanko; Michael John Owen; David E. Housman; Haig H. Kazazian; Gerald Nestadt; Ann E. Pulver; Richard E. Straub; Charles J. MacLean; Dermot Walsh; Kenneth S. Kendler; Lynn E. DeLisi; M Polymeropoulos; Hilary Coon; William Byerley; R. Lofthouse; Elliot S. Gershon; L Golden; T.J. Crow; Robert Freedman; Claudine Laurent; S BodeauPean; Thierry d'Amato; Maurice Jay

Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets (Vallada et al., Am J Med Genet 60:139-146, 1995; Polymeropoulos et al., Neuropsychiatr Genet 54:93-99, 1994; Lasseter et al., Am J Med Genet, 60:172-173, 1995. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not share (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that may be a susceptibility locus for schizophrenia at 22q12.


Molecular Psychiatry | 2009

Meta-analysis of 32 genome-wide linkage studies of schizophrenia

M Y M Ng; Douglas F. Levinson; Stephen V. Faraone; Brian K. Suarez; Lynn E. DeLisi; Tadao Arinami; Brien P. Riley; Tiina Paunio; Ann E. Pulver; Irmansyah; Peter Holmans; Michael A. Escamilla; Dieter B. Wildenauer; Nigel Melville Williams; Claudine Laurent; Bryan J. Mowry; Linda M. Brzustowicz; M. Maziade; Pamela Sklar; David L. Garver; Gonçalo R. Abecasis; Bernard Lerer; M D Fallin; H M D Gurling; Pablo V. Gejman; Eva Lindholm; Hans W. Moises; William Byerley; Ellen M. Wijsman; Paola Forabosco

A genome scan meta-a nalysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142–168 Mb) and 2q (103–134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119–152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16–33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.


Electroencephalography and Clinical Neurophysiology | 1998

Quantitative trait loci analysis of human event-related brain potentials: P3 voltage

Henri Begleiter; Bernice Porjesz; Theodore Reich; Howard J. Edenberg; Alison Goate; John Blangero; Laura Almasy; Tatiana Foroud; P. Van Eerdewegh; John Polich; John W. Rohrbaugh; Samuel Kuperman; Lance O. Bauer; Sean O'Connor; David B. Chorlian; Ting-Kai Li; P.M. Conneally; Victor Hesselbrock; John P. Rice; M. Schuckit; Robert Cloninger; J. Nurnberger; Raymond R. Crowe; Floyd E. Bloom

The P3 event-related brain potential (ERP) is a positive-going voltage change of scalp-recorded electroencephalographic activity that occurs between 300-500 ms after stimulus onset. It is elicited when a stimulus is perceived, memory operations are engaged, and attentional resources are allocated toward its processing. Because this ERP component reflects fundamental cognitive processing, it has found wide utility as an assessment of human mental function in basic and clinical studies. In particular, P3 attributes are heritable and have demonstrated considerable promise as a means to identify individuals at genetic risk for alcoholism. We have conducted a quantitative linkage analysis on a large sample from families with a high density of affected individuals. The analyses suggest that several regions of the human genome contain genetic loci related to the generation of the P3 component of the ERP, which are possible candidate loci underlying the functional organization of human neuroelectric activity.


American Journal of Medical Genetics | 1998

Anxiety proneness linked to epistatic loci in genome scan of human personality traits

C. R. Cloninger; P. Van Eerdewegh; Alison Goate; Howard J. Edenberg; John Blangero; Victor Hesselbrock; Theodore Reich; John I. Nurnberger; M. Schuckit; Bernice Porjesz; Raymond R. Crowe; John P. Rice; Tatiana Foroud; Thomas R. Przybeck; Laura Almasy; K. K. Bucholz; William Wu; Shantia Shears; Kristie Carr; Candice Crose; Chris Willig; Jinghua Zhao; Jay A. Tischfield; Ting-Kai Li; P. M. Conneally; Henri Begleiter

A genome-wide scan between normal human personality traits and a set of genetic markers at an average interval of 13 centimorgans was carried out in 758 pairs of siblings in 177 nuclear families of alcoholics. Personality traits were measured by the Tridimensional Personality Questionnaire. We detected significant linkage between the trait Harm Avoidance, a measure of anxiety proneness, and a locus on chromosome 8p21-23 that explained 38% of the trait variance. There was significant evidence of epistasis between the locus on 8p and others on chromosomes 18p, 20p, and 21q. These oligogenic interactions explained most of the variance in Harm Avoidance. There was suggestive evidence of epistasis in other personality traits. These results confirm the important influence of epistasis on human personality suggested by twin and adoption studies.


American Journal of Human Genetics | 2006

Genomewide Linkage Scan of 409 European-Ancestry and African American Families with Schizophrenia: Suggestive Evidence of Linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the Combined Sample

Brian K. Suarez; Jubao Duan; Alan R. Sanders; Anthony L. Hinrichs; Carol H. Jin; Cuiping Hou; Nancy G. Buccola; Nancy Hale; Ann Weilbaecher; Deborah A. Nertney; Ann Olincy; Susan Green; Arthur W. Schaffer; Christopher J. Smith; Dominique E. Hannah; John P. Rice; Nancy J. Cox; Maria Martinez; Bryan J. Mowry; Farooq Amin; Jeremy M. Silverman; Donald W. Black; William Byerley; Raymond R. Crowe; Robert Freedman; C. Robert Cloninger; Douglas F. Levinson; Pablo V. Gejman

We report the clinical characteristics of a schizophrenia sample of 409 pedigrees--263 of European ancestry (EA) and 146 of African American ancestry (AA)--together with the results of a genome scan (with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia (SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs (ASPs) (279 EA and 124 AA) and 100 all-possible half-sibling ASPs (15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 (empirical Z likelihood-ratio score [Z(lr)] threshold >/=2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >2.0 in 8p were observed from 30.7 cM to 61.7 cM (Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 (equivalent Kong-Cox LOD of 2.30) near D8S1771 (at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 (NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.

Collaboration


Dive into the Raymond R. Crowe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Goate

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore Reich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bernice Porjesz

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

John P. Rice

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge