Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond Ranken is active.

Publication


Featured researches published by Raymond Ranken.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance

David J. Ecker; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Cristina Ivy; Joseph A. Ecker; Brian Libby; Vivek Samant; Kristin A. Sannes-Lowery; Rachael Melton; Kevin L. Russell; Nikki E. Freed; Chris Barrozo; Jianguo Wu; Karl Rudnick; Anjali Desai; Emily Moradi; Duane Knize; David Robbins; James C. Hannis; Patina M. Harrell; Christian Massire; Thomas A. Hall; Yun Jiang; Raymond Ranken; Jared J. Drader; Neill White; John Mcneil; Stanley T. Crooke; Steven A. Hofstadler

Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.


Journal of Clinical Microbiology | 2006

Identification of Acinetobacter Species and Genotyping of Acinetobacter baumannii by Multilocus PCR and Mass Spectrometry

Joseph A. Ecker; Christian Massire; Thomas A. Hall; Raymond Ranken; Thuy-Trang D. Pennella; Cristina Ivy; Lawrence B. Blyn; Steven A. Hofstadler; Timothy P. Endy; Paul T. Scott; Luther E. Lindler; Tacita Hamilton; Charla Gaddy; Kerry Snow; Marie Pe; Joel Fishbain; David Craft; Gregory Deye; Scott Riddell; Eric Milstrey; Bruno Petruccelli; Sylvain Brisse; Vanessa Harpin; Amy Schink; David J. Ecker; Rangarajan Sampath; Mark W. Eshoo

ABSTRACT Members of the genus Acinetobacter are ubiquitous in soil and water and are an important cause of nosocomial infections. A rapid method is needed to genotype Acinetobacter isolates to determine epidemiology and clonality during infectious outbreaks. Multilocus PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) is a method that uses the amplicon base compositions to genotype bacterial species. In order to identify regions of the Acinetobacter genome useful for this method, we sequenced regions of six housekeeping genes (trpE, adk, efp, mutY, fumC, and ppa) from 267 isolates of Acinetobacter. Isolates were collected from infected and colonized soldiers and civilians involved in an outbreak in the military health care system associated with the conflict in Iraq, from previously characterized outbreaks in European hospitals, and from culture collections. Most of the isolates from the Iraqi conflict were Acinetobacter baumannii (189 of 216 isolates). Among these, 111 isolates had genotypes identical or very similar to those associated with well-characterized A. baumannii isolates from European hospitals. Twenty-seven isolates from the conflict were found to have genotypes representing different Acinetobacter species, including 8 representatives of Acinetobacter genomospecies 13TU and 13 representatives of Acinetobacter genomospecies 3. Analysis by the PCR/ESI-MS method using nine primer pairs targeting the most information-rich regions of the trpE, adk, mutY, fumC, and ppa genes distinguished 47 of the 48 A. baumannii genotypes identified by sequencing and identified at the species level at least 18 Acinetobacter species. Results obtained with our genotyping method were essentially in agreement with those obtained by pulse-field gel electrophoresis analysis. The PCR/ESI-MS genotyping method required 4 h of analysis time to first answer with additional samples subsequently analyzed every 10 min. This rapid analysis allows tracking of transmission for the implementation of appropriate infection control measures on a time scale previously not achievable.


PLOS ONE | 2007

Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

Rangarajan Sampath; Kevin L. Russell; Christian Massire; Mark W. Eshoo; Vanessa Harpin; Lawrence B. Blyn; Rachael Melton; Cristina Ivy; Thuy Trang D Pennella; Feng Li; Harold Levene; Thomas A. Hall; Brian Libby; Nancy Fan; Demetrius J. Walcott; Raymond Ranken; Michael Pear; Amy Schink; Jose R. Gutierrez; Jared J. Drader; David Moore; David Metzgar; Lynda Addington; Richard E. Rothman; Charlotte A. Gaydos; Samuel Yang; Kirsten St. George; Meghan E. Fuschino; Amy B. Dean; David E. Stallknecht

Background Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology. Methods and Principal Findings Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999–2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005–2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution. Conclusion/Significance Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance.


Expert Review of Molecular Diagnostics | 2010

New technology for rapid molecular diagnosis of bloodstream infections

David J. Ecker; Rangarajan Sampath; Haijing Li; Christian Massire; Heather Matthews; Donna Toleno; Thomas A. Hall; Lawrence B. Blyn; Mark W. Eshoo; Raymond Ranken; Steven A. Hofstadler; Yi-Wei Tang

Technologies for the correct and timely diagnosis of bloodstream infections are urgently needed. Molecular diagnostic methods have yet to have a major impact on the diagnosis of bloodstream infections; however, new methods are being developed that are beginning to address key issues. In this article, we discuss the key needs and objectives of molecular diagnostics for bloodstream infections and review some of the currently available methods and how these techniques meet key needs. We then focus on a new method that combines nucleic acid amplification with mass spectrometry in a novel approach to molecular diagnosis of bloodstream infections.


Journal of Laboratory Automation | 2006

The Ibis T5000 Universal Biosensor: An Automated Platform for Pathogen Identification and Strain Typing

David J. Ecker; Jared J. Drader; Jose R. Gutierrez; Abel Gutierrez; James C. Hannis; Amy Schink; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Thomas A. Hall; Maria Tobarmosquera; Yun Jiang; Kristin A. Sannes-Lowery; Lendell L. Cummins; Brian Libby; Demetrius J. Walcott; Christian Massire; Raymond Ranken; Sheri Manalili; Cristina Ivy; Rachael Melton; Harold Levene; Vanessa Harpin; Feng Li; Neill White; Michael Pear; Joseph A. Ecker; Vivek Samant; Duane Knize; David Robbins

We describe a new approach to the sensitive and specific identification of bacteria, viruses, fungi, and protozoa based on broad-range PCR and high-performance mass spectrometry. The Ibis T5000 is based on technology developed for the Department of Defense known as T.I.G.E.R. (Triangulation Identification for the Genetic Evaluation of Risks) for pathogen surveillance. The technology uses mass spectrometry—derived base composition signatures obtained from PCR amplification of broadly conserved regions of the pathogen genomes to identify most organisms present in a sample. The process of sample analysis has been automated using a combination of commercially available and custom instrumentation. A software system known as T-Track manages the sample flow, signal analysis, and data interpretation and provides simplified result reports to the user. No specialized expertise is required to use the instrumentation. In addition to pathogen surveillance, the Ibis T5000 is being applied to reducing health care—associated infections (HAIs), emerging and pandemic disease surveillance, human forensics analysis, and pharmaceutical product and food safety, and will be used eventually in human infectious disease diagnosis. In this review, we describe the automated Ibis T5000 instrument and provide examples of how it is used in HAI control.


Emerging Infectious Diseases | 2005

Rapid Identification of Emerging Pathogens: Coronavirus

Rangarajan Sampath; Steven A. Hofstadler; Lawrence B. Blyn; Mark W. Eshoo; Thomas A. Hall; Christian Massire; Harold Levene; James C. Hannis; Patina M. Harrell; Benjamin W. Neuman; Michael J. Buchmeier; Yun Jiang; Raymond Ranken; Jared J. Drader; Vivek Samant; Richard H. Griffey; John Mcneil; Stanley T. Crooke; David J. Ecker

New surveillance approach can analyze >900 polymerase chain reactions per day.


Journal of Clinical Microbiology | 2009

Rapid Molecular Genotyping and Clonal Complex Assignment of Staphylococcus aureus Isolates by PCR Coupled to Electrospray Ionization-Mass Spectrometry

Thomas A. Hall; Rangarajan Sampath; Lawrence B. Blyn; Raymond Ranken; Cristina Ivy; Rachael Melton; Heather Matthews; Neill White; Feng Li; Vanessa Harpin; David J. Ecker; Linda K. McDougal; Brandi Limbago; Tracy Ross; Donna M. Wolk; Vicki H. Wysocki; Karen C. Carroll

ABSTRACT We describe a high-throughput assay using PCR coupled to electrospray ionization-mass spectrometry (PCR/ESI-MS) to determine the genotypes of Staphylococcus aureus isolates. The primer sets used in the PCR/ESI-MS assay were designed to amplify the same genes analyzed in multilocus sequence typing (MLST). The method was used to identify the clonal complex and USA type of each isolate and is suitable for use in a clinical or public-health setting. The method was validated using a panel of diverse isolates from the Centers for Disease Control and Prevention that were previously characterized by MLST and pulsed-field gel electrophoresis (PFGE). Clinical isolates from two geographically distinct hospitals were characterized, and the clustering results were in agreement with those for repetitive-element PCR and PFGE. The PCR/ESI-MS method enables genotyping of over 180 samples of S. aureus per day in an automated fashion.


Journal of Clinical Microbiology | 2008

Rapid Detection and Molecular Serotyping of Adenovirus by Use of PCR Followed by Electrospray Ionization Mass Spectrometry

Lawrence B. Blyn; Thomas A. Hall; Brian Libby; Raymond Ranken; Rangarajan Sampath; Karl Rudnick; Emily Moradi; Anjali Desai; David Metzgar; Kevin L. Russell; Nikki E. Freed; Melinda Balansay; Michael P. Broderick; Miguel Osuna; Steven A. Hofstadler; David J. Ecker

ABSTRACT We have developed a PCR/electrospray ionization mass spectrometry (PCR/ESI-MS) assay for the rapid detection, identification, and serotyping of human adenoviruses. The assay employs a high-performance mass spectrometer to “weigh” the amplicons obtained from PCR using primers designed to amplify known human adenoviruses. Masses are converted to base compositions and, by comparison against a database of the genetic sequences, the serotype present in a sample is determined. The performance of the assay was demonstrated with quantified viral standards and environmental and human clinical samples collected from a military training facility. Over 500 samples per day can be analyzed with sensitivities greater than 100 genomes per reaction. This approach can be applied to many other families of infectious agents for rapid and sensitive analysis.


Journal of Clinical Microbiology | 2009

Pathogen Profiling: Rapid Molecular Characterization of Staphylococcus aureus by PCR/Electrospray Ionization-Mass Spectrometry and Correlation with Phenotype

Donna M. Wolk; Lawrence B. Blyn; Thomas A. Hall; Rangarajan Sampath; Raymond Ranken; Cristina Ivy; Rachael Melton; Heather Matthews; Neill White; Feng Li; Vanessa Harpin; David J. Ecker; Brandi Limbago; Linda K. McDougal; Vicki H. Wysocki; Mian Cai; Karen C. Carroll

ABSTRACT There are few diagnostic methods that readily distinguish among community-acquired methicillin (meticillin)-resistant Staphylococcus aureus strains, now frequently transmitted within hospitals. We describe a rapid and high-throughput method for bacterial profiling of staphylococcal isolates. The method couples PCR to electrospray ionization-mass spectrometry (ESI-MS) and is performed on a platform suitable for use in a diagnostic laboratory. This profiling technology produces a high-resolution genetic signature indicative of the presence of specific genetic elements that represent distinctive phenotypic features. The PCR/ESI-MS signature accurately identified genotypic determinants consistent with phenotypic traits in well-characterized reference and clinical isolates of S. aureus. Molecular identification of the antibiotic resistance genes correlated strongly with phenotypic in vitro resistance. The identification of toxin genes correlated with independent PCR analyses for the toxin genes. Finally, isolates were correctly classified into genotypic groups that correlated with genetic clonal complexes, repetitive-element-based PCR patterns, or pulsed-field gel electrophoresis types. The high-throughput PCR/ESI-MS assay should improve clinical management of staphylococcal infections.


Journal of Clinical Microbiology | 2008

High-Resolution Genotyping of Campylobacter Species by Use of PCR and High-Throughput Mass Spectrometry

James C. Hannis; Sheri Manalili; Thomas A. Hall; Raymond Ranken; Neill White; Rangarajan Sampath; Lawrence B. Blyn; David J. Ecker; Robert E. Mandrell; Clifton K. Fagerquist; Anna H. Bates; William G. Miller; Steven A. Hofstadler

ABSTRACT In this work we report on a high-throughput mass spectrometry-based technique for the rapid high-resolution identification of Campylobacter jejuni strain types. This method readily distinguishes C. jejuni from C. coli, has a resolving power comparable to that of multilocus sequence typing (MLST), is applicable to mixtures, and is highly automated. The strain typing approach is based on high-performance mass spectrometry, which “weighs” PCR amplicons with enough mass accuracy to unambiguously determine the base composition of each amplicon (i.e., the numbers of As, Gs, Cs, and Ts). Amplicons are derived from PCR primers which amplify short (<140-bp) regions of the housekeeping genes used by conventional MLST strategies. The results obtained with a challenge panel that comprised 25 strain types of C. jejuni and 25 strain types of C. coli are presented. These samples were parsed and resolved with demonstrated sensitivity down to 10 genomes/PCR from pure isolates.

Collaboration


Dive into the Raymond Ranken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Li

Isis Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge