Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reb Russell is active.

Publication


Featured researches published by Reb Russell.


Drug Discovery Today | 2014

Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications.

Hui Wei; Jingjie Mo; Li Tao; Reb Russell; Adrienne A. Tymiak; Guodong Chen; Roxana E. Iacob; John R. Engen

The higher order structure of protein therapeutics can be interrogated with hydrogen/deuterium exchange mass spectrometry (HDX-MS). HDX-MS is now a widely used tool in the structural characterization of protein therapeutics. In this review, HDX-MS based workflows designed for protein therapeutic discovery and development processes are presented, focusing on the specific applications of epitope mapping for protein/drug interactions and biopharmaceutical comparability studies. Future trends in the application of HDX-MS in protein therapeutics characterization are also described.


Journal of the American Society for Mass Spectrometry | 2010

A tris (2-carboxyethyl) phosphine (TCEP) related cleavage on cysteine-containing proteins

Peiran Liu; Brian W. O’Mara; Bethanne M. Warrack; Wei Wu; Yunping Huang; Yihong Zhang; Rulin Zhao; Mei Lin; Michael S. Ackerman; Peter K. Hocknell; Guodong Chen; Li Tao; Siegfried Rieble; Jack Wang; David Wang-Iverson; Adrienne A. Tymiak; Michael J. Grace; Reb Russell

Introduced in the late 1980s as a reducing reagent, Tris (2-carboxyethyl) phosphine (TCEP) has now become one of the most widely used protein reductants. To date, only a few studies on its side reactions have been published. We report the observation of a side reaction that cleaves protein backbones under mild conditions by fracturing the cysteine residues, thus generating heterogeneous peptides containing different moieties from the fractured cysteine. The peptide products were analyzed by high performance liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptides with a primary amine and a carboxylic acid as termini were observed, and others were found to contain amidated or formamidated carboxy termini, or formylated or glyoxylic amino termini. Formamidation of the carboxy terminus and the formation of glyoxylic amino terminus were unexpected reactions since both involve breaking of carbon—carbon bonds in cysteine.


Protein Science | 2012

Glycine to glutamic acid misincorporation observed in a recombinant protein expressed by Escherichia coli cells

Yunping Huang; Brian W. O'Mara; Matthew Conover; Richard Ludwig; Jinmei Fu; Li Tao; Zheng Jian Li; Siegfried Rieble; Michael J. Grace; Reb Russell

A novel amino acid misincorporation, in which the intended glycine (Gly) residues were replaced by a glutamic acid (Glu), was observed in a recombinant protein expressed by Escherichia coli. The misincorporation was identified by peptide mapping and liquid chromatography–tandem mass spectrometric analysis on proteolyzed peptides of the protein and verified using the corresponding synthetic peptides containing the misincorporated residues. Analysis of the distribution of the misincorporated residues and their codon usage shows strong correlation between this misincorporation and the use of rarely used codon within the E. coli expression system. Results in this study suggest that the usage of the rare codon GGA has resulted in a Glu for Gly misincorporation.


Biotechnology Progress | 2014

Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines.

Ping Xu; Xiao-Ping Dai; Erica Graf; Richard Martel; Reb Russell

A unique and nontraditional approach using glutamine and asparagine supplements for CHO‐glutamine synthetase (GS) cell lines was studied. In our experiments, we found that a decrease in pH and an increase in cell death occurred in production phase of a GS cell line, leading to reduced antibody expression and lower antibody yields. The experimental results and the statistical analysis (ANOVA) indicated that additions of glutamine and asparagine in the basal and feed media were effective to buffer the cell culture pH, reduce lactate generation, maintain a higher cell viability profile, and improve antibody productivity. In bench‐top bioreactors, glutamine and asparagine supplementation helped to prevent cell death, improve antibody yield, and reduce base usage. Glutamine is normally excluded from culture media for GS cell lines to prevent the bypass of selection pressure. In this study, however, the addition of glutamine did not affect cell population homogeneity, protein quality, or decrease antibody yield of two GS cell lines.


Journal of Chromatography A | 2013

A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

Lu Wang; Jill Dembecki; Neil Jaffe; Brian W. O’Mara; Hui Cai; Colleen Sparks; Jian Zhang; Sarah Laino; Reb Russell; Michelle Wang

Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy prolongs resin life time and consistently delivers high purity drug products.


Journal of Chromatographic Science | 2012

Evaporative light scattering detection based HPLC method for the determination of polysorbate 80 in therapeutic protein formulations.

Vikram S. Nayak; Zhijun Tan; Peter M. Ihnat; Reb Russell; Michael J. Grace

An evaporative light scattering detection (ELSD) based high-performance liquid chromatography (HPLC) method is developed for the determination of polysorbate 80 (tween 80) in therapeutic protein formulations. The method is simple and overcomes the difficulties associated with specificity and sensitivity. The method is suitable for the quantitation of polysorbate 80 in the usual formulation range (0.01-0.1%) as well as in trace amounts ≥13 µg/mL. The analysis is based on the removal of protein first by solid-phase extraction using Oasis HLB cartridges followed by HPLC analysis using Inertsil ODS-3 C 18 column (4.6×150 mm, 5 µm) using reversed-phase conditions. The detector response changes exponentially with an increase in polysorbate concentration. A very good linear fit of log ELSD response against log polysorbate 80 concentration is observed. The specificity, sensitivity, precision, and accuracy of the method are suitable for the quantitation of polysorbate 80 in protein formulations.


Biotechnology Progress | 2017

Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale‐down model for biologics process development

Ping Xu; Colleen Clark; Todd Ryder; Colleen Sparks; Jiping Zhou; Michelle Wang; Reb Russell; Charo Scott

Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 ‐ 5 L bench‐top bioreactors requires high foot‐print, and running cost. The establishment of the Ambr 250 as a scale‐down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (kLa) in the Ambr 250 was conducted to define optimal operational conditions. Scale‐down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and kLa have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5‐L and 1000‐L bioreactor scales, when using kLa as a scale‐down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench‐top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5‐L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench‐top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry.


Journal of Pharmaceutical and Biomedical Analysis | 2012

Quantitative analysis of tris(2-carboxyethyl)phosphine by anion-exchange chromatography and evaporative light-scattering detection

Zhijun Tan; Peter M. Ihnat; Vikram S. Nayak; Reb Russell

Tris(2-carboxyethyl)phosphine (TCEP) belongs to the trialkylphosphine class of reducing agents that are widely used in research and industry. In this paper, we discuss a sensitive high-performance liquid chromatography (HPLC) method equipped with an evaporative light scattering detector (ELSD) for the determination of TCEP in pharmaceutical samples containing therapeutic protein and stabilizing additives. TCEP was first completely oxidized with hydrogen peroxide to form TCEP oxide (TCEPO). Proteins and salts were removed from the sample by solid phase extraction. TCEPO concentrations were determined by anion exchange chromatography coupled with ELSD. Because of the 1:1 oxidation stoichiometry for the reaction, the concentration of TCEP in the sample is directly proportional to the measured concentration of TCEPO. A good linearity fit of ELSD response versus TCEPO concentration was observed over the range of 20-2000 μM. The specificity, precision, accuracy, and robustness of the method were evaluated and suitable for the quantitation of TCEP in biological samples. Moreover, selective treatment with peroxide prior to solid-phase extraction may be used to determine the mass balance of TCEP species or track the oxidation rate in pharmaceutical samples.


Biotechnology and Bioengineering | 2016

CHO cells knocked out for TSC2 display an improved productivity of antibodies under fed batch conditions

Duncan Mcvey; Michael Aronov; Giovanni Rizzi; Alexis Cowan; Charo Scott; John R. Megill; Reb Russell; Boaz Tirosh

The kinase mTOR operates in two cellular complexes, mTORC1 and mTORC2. mTORC1 adjusts metabolic activity according to external growth conditions and nutrients availability. When conditions are prosperous, mTOR facilitates protein and lipid biosyntheses and inhibits autophagy, while under metabolic constraints, however, its attenuation induces a catabolic program, energy preservation and autophagy. CHO is a key cell line for manufacturing of biologics owing to its remarkable ability to grow to high densities and maintain protein production and secretion for extended times. While high mTOR activity has been associated with high productivity in CHO cells, its inhibition by rapamycin has also been documented to augment productivity via promotion of viability. Here using CRISPR/Cas9 editing we engineered CHO cells to enforce high mTORC1 activity by knocking‐out TSC2, a major mTOR inhibitory protein, or PTEN, a phosphatase that attenuates the PI3K/AKT/mTOR pathway. Only TSC2‐deleted cells exhibited a constitutive activation of mTORC1 under fed batch conditions. Cells grew larger in size, synthesized more proteins and displayed an over twofold elevation in their specific productivity. While peak viable cell density was compromised, overall titers increased to an extent dependent upon the parental clone. Our data underscore manipulation of TSC as a strategy to improve performance of CHO cell in bioreactors. Biotechnol. Bioeng. 2016;113: 1942–1952.


Biotechnology Progress | 2015

Caprylic acid‐induced impurity precipitation from protein A capture column elution pool to enable a two‐chromatography‐step process for monoclonal antibody purification

Ji Zheng; Lu Wang; Barbara Twarowska; Sarah Laino; Colleen Sparks; Timothy R. Smith; Reb Russell; Michelle Wang

This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography.

Collaboration


Dive into the Reb Russell's collaboration.

Top Co-Authors

Avatar

Li Tao

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wu

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge