Rebecca B. Delconte
Walter and Eliza Hall Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca B. Delconte.
Nature Immunology | 2016
Rebecca B. Delconte; Tatiana B. Kolesnik; Laura F. Dagley; Jai Rautela; Wei Shi; Eva M. Putz; Kimberley Stannard; Jian Guo Zhang; Charis E. Teh; Matt Firth; Takashi Ushiki; Christopher E. Andoniou; Mariapia A. Degli-Esposti; Phillip P Sharp; C.E. Sanvitale; Giuseppe Infusini; Nicholas P. D. Liau; Edmond M. Linossi; Christopher J. Burns; Sebastian Carotta; Daniel Gray; Cyril Seillet; Dana S. Hutchinson; Gabrielle T. Belz; Andrew I. Webb; Warren S. Alexander; Shawn S.-C. Li; Alex N. Bullock; Jeffery J. Babon; Mark J. Smyth
The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish−/− mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell–mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.
Immunity | 2016
Rebecca B. Delconte; Wei Shi; Priyanka Sathe; Takashi Ushiki; Cyril Seillet; Martina Minnich; Tatiana B. Kolesnik; Lucille C. Rankin; Lisa A. Mielke; Jian-Guo Zhang; Meinrad Busslinger; Mark J. Smyth; Dana S. Hutchinson; Stephen L. Nutt; Sandra E. Nicholson; Warren S. Alexander; Lynn M. Corcoran; Eric Vivier; Gabrielle T. Belz; Sebastian Carotta; Nicholas D. Huntington
The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.
OncoImmunology | 2017
Eva M. Putz; Camille Guillerey; Kevin Kos; Kimberley Stannard; Kim Miles; Rebecca B. Delconte; Kazuyoshi Takeda; Sandra E. Nicholson; Nicholas D. Huntington; Mark J. Smyth
ABSTRACT The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy.
Cell Death & Differentiation | 2017
Emma M. Carrington; Yifan Zhan; Jamie L. Brady; Jian Guo Zhang; Robyn M. Sutherland; Natasha S Anstee; Robyn L. Schenk; Ingela Vikstrom; Rebecca B. Delconte; David Segal; Nicholas D. Huntington; David M. Tarlinton; David C. S. Huang; Andreas Strasser; Suzanne Cory; Marco J. Herold; Andrew M. Lew
Survival of various immune cell populations has been proposed to preferentially rely on a particular anti-apoptotic BCL-2 family member, for example, naive T cells require BCL-2, while regulatory T cells require MCL-1. Here we examined the survival requirements of multiple immune cell subsets in vitro and in vivo, using both genetic and pharmacological approaches. Our findings support a model in which survival is determined by quantitative participation of multiple anti-apoptotic proteins rather than by a single anti-apoptotic protein. This model provides both an insight into how the sum of relative levels of anti-apoptotic proteins BCL-2, MCL-1 and A1 influence survival of T cells, B cells and dendritic cells, and a framework for ascertaining how these different immune cells can be optimally targeted in treatment of immunopathology, transplantation rejection or hematological cancers.
Journal of Experimental Medicine | 2017
Charlotte Viant; Sophie Guia; Robert J. Hennessy; Jai Rautela; Kim Pham; Claire Bernat; Wilford Goh; Yuhao Jiao; Rebecca B. Delconte; Michael Roger; Vanina Simon; Fernando Souza-Fonseca-Guimaraes; Stephanie Grabow; Gabrielle T. Belz; Benjamin T. Kile; Andreas Strasser; Daniel Gray; Phillip D. Hodgkin; Bruce Beutler; Eric Vivier; Sophie Ugolini; Nicholas D. Huntington
Natural killer (NK) cells are innate lymphoid cells with antitumor functions. Using an N-ethyl-N-nitrosourea (ENU)–induced mutagenesis screen in mice, we identified a strain with an NK cell deficiency caused by a hypomorphic mutation in the Bcl2 (B cell lymphoma 2) gene. Analysis of these mice and the conditional deletion of Bcl2 in NK cells revealed a nonredundant intrinsic requirement for BCL2 in NK cell survival. In these mice, NK cells in cycle were protected against apoptosis, and NK cell counts were restored in inflammatory conditions, suggesting a redundant role for BCL2 in proliferating NK cells. Consistent with this, cycling NK cells expressed higher MCL1 (myeloid cell leukemia 1) levels in both control and BCL2-null mice. Finally, we showed that deletion of BIM restored survival in BCL2-deficient but not MCL1-deficient NK cells. Overall, these data demonstrate an essential role for the binding of BCL2 to BIM in the survival of noncycling NK cells. They also favor a model in which MCL1 is the dominant survival protein in proliferating NK cells.
Journal of Immunology | 2016
Kevin V. Chow; Rebecca B. Delconte; Nicholas D. Huntington; David M. Tarlinton; Robyn M. Sutherland; Yifan Zhan; Andrew M. Lew
Although the mechanisms governing the innate recognition of pathogen-associated molecular patterns have been well defined, how allogeneic cellular stimuli evoke innate responses remains less so. In this article, we report that upon i.v. transfer (to avoid major iatrogenic interference), allogeneic but not syngeneic leukocytes could induce a rapid (after 1 d) accumulation of host monocyte–derived dendritic cells (moDCs) without any increase in conventional DCs. This occurred in various donor–host strain combinations, did not require MHC mismatch, and could be induced by various donor cell types including B cells, T cells, or NK cells. Using RAG−/−γc−/− and scid γc−/−mice with different MHC, we found that the presence of either donor or host lymphoid cells was required. Alloinduced moDC accumulation was significantly reduced when splenocytes from mice deficient in NK cells by genetic ablation were used as donors. A major component of this moDC accumulation appears to be recruitment. Our findings provide new insights into how the innate and adaptive immune system may interact during allogeneic encounters and thus transplant rejection.
Immunology and Cell Biology | 2018
Jai Rautela; Fernando Souza-Fonseca-Guimaraes; Soroor Hediyeh-Zadeh; Rebecca B. Delconte; Melissa J. Davis; Nicholas D. Huntington
Natural Killer (NK) cells have long been considered an important part of the anti‐tumor immune response due to their potent cytolytic and cytokine‐secreting abilities. To date, a clear demonstration of the role NK cells play in human cancer is lacking, and there are still very few examples of therapies that efficiently exploit or enhance the spontaneous ability of NK cells to destroy the autologous cancer cells. Given the paradigm shift toward cancer immunotherapy over the past decade, there is a renewed push to understand how NK cell homeostasis and function are regulated in order to therapeutically harness these cells to treat cancer. This review will highlight recent advancements in our understanding of how growth factors impact on NK cell development, differentiation, survival and function with an emphasis on how these pathways may influence NK cell activity in the tumor microenvironment and control of cancer metastasis.
Molecular Immunology | 2018
Jai Rautela; Laura F. Dagley; Tobias Kratina; Angaleena Anthony; Wilford Goh; Elliot Surgenor; Rebecca B. Delconte; Andrew I. Webb; Ngaire Elwood; Joanna R. Groom; Fernando Souza-Fonseca-Guimaraes; Lynn M. Corcoran; Nicholas D. Huntington
NK cells are cytotoxic lymphocytes with a key role in limiting tumour metastases. In mice, the NK cell lineage continually expresses high levels of the Inhibitor of DNA-binding 2 (Id2) protein and loss of Id2 is incongruous with their survival due to aberrant E-protein target gene activity. Using novel Id2 and E-protein antibodies that detect both mouse and human proteins, we have extensively characterised Id2 and E-protein expression in murine and human NK cells. We detected clear expression of E2 A and HEB, and to a lesser extent E2-2 in murine NK cells. In contrast HEB appears to be the major E-protein expressed in human NK cells, with minor E2-2 expression and surprisingly, no E2 A detected in primary NK cells nor human NK cell lines. These novel antibodies are also functional in immunofluorescence and immunoprecipitation. Mass spectrometry analysis of Id2 immuno-precipitated from murine NK cells revealed a number of novel associated proteins including several members of the SWI/SNF-related matrix-associated actin-dependent regulator chromatin (SMARC) and Mediator complex (MED) families. Taken together, these data highlight the utility of novel Id2 and E-protein antibodies and caution against mouse models for understanding Id2/E-protein biology in NK cells given their clearly disparate expression patternbetween species.
Frontiers in Immunology | 2018
Li Sun; Jai Rautela; Rebecca B. Delconte; Fernando Souza-Fonseca-Guimaraes; Emma M. Carrington; Robyn L. Schenk; Marco J. Herold; Nicholas D. Huntington; Andrew M. Lew; Yuekang Xu; Yifan Zhan
GM-CSF promotes myeloid differentiation of cultured bone marrow cells into cells of the granulocytic and monocytic lineage; the latter can further differentiate into monocytes/macrophages and dendritic cells. How GM-CSF selects for these different myeloid fates is unresolved. GM-CSF levels can change either iatrogenically (e.g., augmenting leukopoiesis after radiotherapy) or naturally (e.g., during infection or inflammation) resulting in different immunological outcomes. Therefore, we asked whether the dose of GM-CSF may regulate the development of three types of myeloid cells. Here, we showed that GM-CSF acted as a molecular rheostat where the quantity determined which cell type was favored; moreover, the cellular process by which this was achieved was different for each cell type. Thus, low quantities of GM-CSF promoted the granulocytic lineage, mainly through survival. High quantities promoted the monocytic lineage, mainly through proliferation, whereas moderate quantities promoted moDCs, mainly through differentiation. Finally, we demonstrated that monocytes/macrophages generated with different doses of GM-CSF differed in function. We contend that this selective effect of GM-CSF dose on myeloid differentiation and function should be taken into consideration during pathophysiological states that may alter GM-CSF levels and during GM-CSF agonistic or antagonistic therapy.
International Journal of Molecular Sciences | 2017
Priyanka Sathe; Swee Heng Milon Pang; Rebecca B. Delconte; Ngaire Elwood; Nicholas D. Huntington
Understanding the pathways and regulation of human haematopoiesis, in particular, lymphopoiesis, is vital to manipulation of these processes for therapeutic purposes. However, although haematopoiesis has been extensively characterised in mice, translation of these findings to human biology remains rudimentary. Here, we describe the isolation of three progenitor subsets from human foetal bone marrow that represent differential stages of commitment to the natural killer (NK) cell lineage based on IL-15 responsiveness. We identify CD7 as a marker of IL-15 responsive progenitors in human bone marrow and find that this expression is maintained throughout commitment and maturation. Within the CD7+ fraction, we focussed on the lineage potential of three subsets based on CD127 and CD117 expression and observed restricted lymphoid and biased NK cell potential amongst subsets. We further demonstrate the presence of subsets similar in both phenotype and function in umbilical cord blood and the bone marrow of humanised mice, validating these as appropriate sources of progenitors for the investigation of human haematopoiesis. Overall, we describe several stages in the process of lymphopoiesis that will form the basis of investigating the regulators of this process in humans.