Rebecca De Clercq
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca De Clercq.
Science | 2008
Ive De Smet; Valya Vassileva; Bert De Rybel; Mitchell P. Levesque; Wim Grunewald; Daniël Van Damme; Giel Van Noorden; Mirande Naudts; Gert Van Isterdael; Rebecca De Clercq; Jean Y. J. Wang; Nicholas Meuli; Steffen Vanneste; Jirri Friml; Pierre Hilson; Gerd Jürgens; Gwyneth C. Ingram; Dirk Inzé; Philip N. Benfey; Tom Beeckman
During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.
Plant Journal | 2008
Moussa Benhamed; Marie-Laure Martin-Magniette; Ludivine Taconnat; Frédérique Bitton; Caroline Servet; Rebecca De Clercq; Björn De Meyer; Caroline Buysschaert; Stephane Rombauts; Raimundo Villarroel; Sébastien Aubourg; Jim Beynon; Rishikesh P. Bhalerao; George Coupland; Wilhelm Gruissem; Frank L.H. Menke; Bernd Weisshaar; Jean-Pierre Renou; Dao-Xiu Zhou; Pierre Hilson
We have assembled approximately 20 000 Arabidopsis thaliana promoter regions, compatible with functional studies that require cloning and with microarray applications. The promoter fragments can be captured as modular entry clones (MultiSite Gateway format) via site-specific recombinational cloning, and transferred into vectors of choice to investigate transcriptional networks. The fragments can also be amplified by PCR and printed on glass arrays. In combination with immunoprecipitation of protein-DNA complexes (ChIP-chip), these arrays enable characterization of binding sites for chromatin-associated proteins or the extent of chromatin modifications at genome scale. The Arabidopsis histone acetyltransferase GCN5 associated with 40% of the tested promoters. At most sites, binding did not depend on the integrity of the GCN5 bromodomain. However, the presence of the bromodomain was necessary for binding to 11% of the promoter regions, and correlated with acetylation of lysine 14 of histone H3 in these promoters. Combined analysis of ChIP-chip and transcriptomic data indicated that binding of GCN5 does not strictly correlate with gene activation. GCN5 has previously been shown to be required for light-regulated gene expression and growth, and we found that GCN5 targets were enriched in early light-responsive genes. Thus, in addition to its transcriptional activation function, GCN5 may play an important role in priming activation of inducible genes under non-induced conditions.
Plant Physiology | 2010
Joanna Boruc; Evelien Mylle; Maria Duda; Rebecca De Clercq; Stephane Rombauts; Danny Geelen; Pierre Hilson; Dirk Inzé; Daniël Van Damme; Eugenia Russinova
Cell division depends on the correct localization of the cyclin-dependent kinases that are regulated by phosphorylation, cyclin proteolysis, and protein-protein interactions. Although immunological assays can define cell cycle protein abundance and localization, they are not suitable for detecting the dynamic rearrangements of molecular components during cell division. Here, we applied an in vivo approach to trace the subcellular localization of 60 Arabidopsis (Arabidopsis thaliana) core cell cycle proteins fused to green fluorescent proteins during cell division in tobacco (Nicotiana tabacum) and Arabidopsis. Several cell cycle proteins showed a dynamic association with mitotic structures, such as condensed chromosomes and the preprophase band in both species, suggesting a strong conservation of targeting mechanisms. Furthermore, colocalized proteins were shown to bind in vivo, strengthening their localization-function connection. Thus, we identified unknown spatiotemporal territories where functional cell cycle protein interactions are most likely to occur.
FEBS Letters | 1999
Nancy Terryn; Leo Heijnen; Annick De Keyser; Martien Van Asseldonck; Rebecca De Clercq; Henk Verbakel; Jan Gielen; Marc Zabeau; Raimundo Villarroel; Taco Jesse; Pia Neyt; René Cornelis Josephus Hogers; Hilde Van Den Daele; Wilson Ardiles; Christine Schueller; Klaus F. X. Mayer; Patrice Dehais; Stephane Rombauts; Marc Van Montagu; Pierre Rouzé; Pieter Vos
As part of the European Scientists Sequencing Arabidopsis program, a contiguous region (396 607 bp) located on chromosome 4 around the APETALA2 gene was sequenced. Analysis of the sequence and comparison to public databases predicts 103 genes in this area, which represents a gene density of one gene per 3.85 kb. Almost half of the genes show no significant homology to known database entries. In addition, the first 45 kb of the contig, which covers 11 genes, is similar to a region on chromosome 2, as far as coding sequences are concerned. This observation indicates that ancient duplications of large pieces of DNA have occurred in Arabidopsis.
The Plant Cell | 2015
Nathalie Gonzalez; Laurens Pauwels; Alexandra Baekelandt; Liesbeth De Milde; Jelle Van Leene; Nienke Besbrugge; Ken S. Heyndrickx; Amparo Cuéllar Pérez; Astrid Nagels Durand; Rebecca De Clercq; Eveline Van De Slijke; Robin Vanden Bossche; Dominique Eeckhout; Kris Gevaert; Klaas Vandepoele; Geert De Jaeger; Alain Goossens; Dirk Inzé
PPD2 interacts with KIX8 and KIX9 proteins to regulate the transcription of its target genes, including the CYCD3s, and helps to control final leaf size in Arabidopsis. Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls.
Plant Physiology | 2015
Laurens Pauwels; Andrés Ritter; Jonas Goossens; Astrid Nagels Durand; Hong Xia Liu; Yangnan Gu; Jan Geerinck; Marta Boter; Robin Vanden Bossche; Rebecca De Clercq; Jelle Van Leene; Kris Gevaert; Geert De Jaeger; Roberto Solano; Sophia L. Stone; Roger W. Innes; Judy Callis; Alain Goossens
An E3 ubiquitin ligase involved in abscisic acid signaling modulates the stability of a central jasmonate signaling component. Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCFCOI1) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCFCOI1 components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.
PLOS ONE | 2014
Amparo Cuéllar Pérez; Astrid Nagels Durand; Robin Vanden Bossche; Rebecca De Clercq; Geert Persiau; Saskia C. M. Van Wees; Corné M. J. Pieterse; Kris Gevaert; Geert De Jaeger; Alain Goossens; Laurens Pauwels
Jasmonate (JA) signalling is mediated by the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins, which are degraded upon JA perception to release downstream responses. The ZIM protein domain is characteristic of the larger TIFY protein family. It is currently unknown if the atypical member TIFY8 is involved in JA signalling. Here we show that the TIFY8 ZIM domain is functional and mediated interaction with PEAPOD proteins and NINJA. TIFY8 interacted with TOPLESS through NINJA and accordingly acted as a transcriptional repressor. TIFY8 expression was inversely correlated with JAZ expression during development and after infection with Pseudomonas syringae. Nevertheless, transgenic lines with altered TIFY8 expression did not show changes in JA sensitivity. Despite the functional ZIM domain, no interaction with JAZ proteins could be found. In contrast, TIFY8 was found in protein complexes involved in regulation of dephosphorylation, deubiquitination and O-linked N-acetylglucosamine modification suggesting an important role in nuclear signal transduction.
FEBS Letters | 2006
Rudy Vanderhaeghen; Rebecca De Clercq; Mansour Karimi; Marc Van Montagu; Pierre Hilson; Mieke Van Lijsebettens
Cap‐independent translation (CIT) occurs at the leader sequences of uncapped plant viral RNAs, but also at a number of normally capped cellular mRNAs and has been correlated with sequence complementarity to 18S rRNA. The ribosomal protein S18 (RPS18) is a component of the small ribosomal subunit and is encoded by three gene copies (A, B, and C) in the Arabidopsis thaliana genome. The RPS18C mRNA was most abundant and contained a short 5′ untranslated region of 84 bp that is complementary to a novel putative interaction site at the 3′ end of the 18S rRNA. The RPS18C leader mediated CIT as demonstrated by dicistronic constructs consisting of luciferase and chloramphenicol acetyl transferase reporter genes in an in vitro wheat germ extract system. CIT was rapidly inhibited upon addition of an oligonucleotide that competed for the 18S rRNA site complementary to the RPS18C leader and interfered with polysome assembly at the transcript.
Plant Journal | 2016
Alex Van Moerkercke; Priscille Steensma; Ivo Gariboldi; Javiera Espoz; Purin Candra Purnama; Fabian Schweizer; Karel Miettinen; Robin Vanden Bossche; Rebecca De Clercq; Johan Memelink; Alain Goossens
Monoterpenoid indole alkaloids (MIAs) are produced as plant defence compounds. In the medicinal plant Catharanthus roseus, they comprise the anticancer compounds vinblastine and vincristine. The iridoid (monoterpenoid) pathway forms one of the two branches that feed MIA biosynthesis and its activation is regulated by the transcription factor (TF) basic helix-loop-helix (bHLH) iridoid synthesis 1 (BIS1). Here, we describe the identification and characterisation of BIS2, a jasmonate (JA)-responsive bHLH TF expressed preferentially in internal phloem-associated parenchyma cells, which transactivates promoters of iridoid biosynthesis genes and can homodimerise or form heterodimers with BIS1. Stable overexpression of BIS2 in C. roseus suspension cells and transient ectopic expression of BIS2 in C. roseus petal limbs resulted in increased transcript accumulation of methylerythritol-4-phosphate and iridoid pathway genes, but not of other MIA genes or triterpenoid genes. Transcript profiling also indicated that BIS2 expression is part of an amplification loop, as it is induced by overexpression of either BIS1 or BIS2. Accordingly, silencing of BIS2 in C. roseus suspension cells completely abolished the JA-induced upregulation of the iridoid pathway genes and subsequent MIA accumulation, despite the presence of induced BIS1, indicating that BIS2 is essential for MIA production in C. roseus.
Methods of Molecular Biology | 2013
Amparo Pérez Cuéllar; Laurens Pauwels; Rebecca De Clercq; Alain Goossens
Protein-protein interaction studies are crucial to unravel how jasmonate (JA) signals are transduced. Among the different techniques available, yeast two-hybrid (Y2H) is commonly used within the JA research community to identify proteins belonging to the core JA signaling module. The technique is based on the reconstitution of a transcriptional activator that drives the reporter gene expression upon protein-protein interactions. The method is sensitive and straightforward and can be adapted for different approaches. In this chapter, we provide a detailed protocol to perform targeted Y2H assays to test known proteins and/or protein domains for direct interaction in a pairwise manner and present the possibility to study ternary protein complexes through Y3H.