Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca F. Grais is active.

Publication


Featured researches published by Rebecca F. Grais.


The Lancet | 2015

Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial

Ana Maria Henao-Restrepo; Ira M. Longini; Matthias Egger; Natalie E Dean; W. John Edmunds; Anton Camacho; Miles W. Carroll; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Stefanie Hossmann; Mandy Kader Kondé; Souleymane Kone; Eeva Kuisma; Myron M. Levine; Sema Mandal; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari; Conall H. Watson; Sakoba Keita; Marie Paule Kieny; John-Arne Røttingen

BACKGROUND A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


Nature | 2008

The dynamics of measles in sub-Saharan Africa

Matthew J. Ferrari; Rebecca F. Grais; Nita Bharti; Andrew J. K. Conlan; Ottar N. Bjørnstad; Lara Wolfson; Philippe J Guerin; Ali Djibo; Bryan T. Grenfell

Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission—generating high amplitude epidemics—within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur.


The Lancet | 2017

Efficacy and Effectiveness of an rVSV-Vectored Vaccine in Preventing Ebola Virus Disease: Final Results from the Guinea Ring Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffit!)

Ana Maria Henao-Restrepo; Anton Camacho; Ira M. Longini; Conall H. Watson; W. John Edmunds; Matthias Egger; Miles W. Carroll; Natalie E Dean; Ibrahima Dina Diatta; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Pierre-Stéphane Gsell; Stefanie Hossmann; Sara Viksmoen Watle; Mandy Kader Kondé; Sakoba Keita; Souleymane Kone; Eewa Kuisma; Myron M. Levine; Sema Mandal; Thomas Mauget; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari

Summary Background rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. Methods We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6–17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Findings In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9–100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3–100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. Interpretation The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. Funding WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norways GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Clinical Infectious Diseases | 2006

A Large Outbreak of Hepatitis E among a Displaced Population in Darfur, Sudan, 2004: The Role of Water Treatment Methods

Jean-Paul Guthmann; Hilde Kløvstad; Delia Boccia; Nuha Hamid; Loretxu Pinoges; Jacques-Yves Nizou; Mercedes Tatay; Francisco Diaz; Alain Moren; Rebecca F. Grais; Iza Ciglenecki; Elisabeth Nicand; Philippe J Guerin

BACKGROUND The conflict in Darfur, Sudan, was responsible for the displacement of 1.8 million civilians. We investigated a large outbreak of hepatitis E virus (HEV) infection in Mornay camp (78,800 inhabitants) in western Darfur. METHODS To describe the outbreak, we used clinical and demographic information from cases recorded at the camp between 26 July and 31 December 2004. We conducted a case-cohort study and a retrospective cohort study to identify risk factors for clinical and asymptomatic hepatitis E, respectively. We collected stool and serum samples from animals and performed a bacteriological analysis of water samples. Human samples were tested for immunoglobulin G and immunoglobulin M antibody to HEV (for serum samples) and for amplification of the HEV genome (for serum and stool samples). RESULTS In 6 months, 2621 hepatitis E cases were recorded (attack rate, 3.3%), with a case-fatality rate of 1.7% (45 deaths, 19 of which involved were pregnant women). Risk factors for clinical HEV infection included age of 15-45 years (odds ratio, 2.13; 95% confidence interval, 1.02-4.46) and drinking chlorinated surface water (odds ratio, 2.49; 95% confidence interval, 1.22-5.08). Both factors were also suggestive of increased risk for asymptomatic HEV infection, although this was not found to be statistically significant. HEV RNA was positively identified in serum samples obtained from 2 donkeys. No bacteria were identified from any sample of chlorinated water tested. CONCLUSIONS Current recommendations to ensure a safe water supply may have been insufficient to inactivate HEV and control this epidemic. This research highlights the need to evaluate current water treatment methods and to identify alternative solutions adapted to complex emergencies.


Science | 2011

Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery.

Neelam Bharti; Andrew J. Tatem; Matthew J. Ferrari; Rebecca F. Grais; Ali Djibo; Bryan T. Grenfell

Changes in human population density as measured by satellite images of nighttime lights predict measles. Measles epidemics in West Africa cause a significant proportion of vaccine-preventable childhood mortality. Epidemics are strongly seasonal, but the drivers of these fluctuations are poorly understood, which limits the predictability of outbreaks and the dynamic response to immunization. We show that measles seasonality can be explained by spatiotemporal changes in population density, which we measure by quantifying anthropogenic light from satellite imagery. We find that measles transmission and population density are highly correlated for three cities in Niger. With dynamic epidemic models, we demonstrate that measures of population density are essential for predicting epidemic progression at the city level and improving intervention strategies. In addition to epidemiological applications, the ability to measure fine-scale changes in population density has implications for public health, crisis management, and economic development.


The New England Journal of Medicine | 2014

Use of Vibrio cholerae Vaccine in an Outbreak in Guinea

Francisco J. Luquero; Lise Grout; Keita Sakoba; Bala Traore; Melat Heile; Alpha Amadou Diallo; Christian Itama; Marie-Laure Quilici; Martin A. Mengel; José María Eiros; Micaela Serafini; Dominique Legros; Rebecca F. Grais; Abstr Act

BACKGROUND The use of vaccines to prevent and control cholera is currently under debate. Shanchol is one of the two oral cholera vaccines prequalified by the World Health Organization; however, its effectiveness under field conditions and the protection it confers in the first months after administration remain unknown. The main objective of this study was to estimate the short-term effectiveness of two doses of Shanchol used as a part of the integrated response to a cholera outbreak in Africa. METHODS We conducted a matched case-control study in Guinea between May 20 and October 19, 2012. Suspected cholera cases were confirmed by means of a rapid test, and controls were selected among neighbors of the same age and sex as the case patients. The odds of vaccination were compared between case patients and controls in bivariate and adjusted conditional logistic-regression models. Vaccine effectiveness was calculated as (1-odds ratio)×100. RESULTS Between June 8 and October 19, 2012, we enrolled 40 case patients and 160 controls in the study for the primary analysis. After adjustment for potentially confounding variables, vaccination with two complete doses was associated with significant protection against cholera (effectiveness, 86.6%; 95% confidence interval, 56.7 to 95.8; P=0.001). CONCLUSIONS In this study, Shanchol was effective when used in response to a cholera outbreak in Guinea. This study provides evidence supporting the addition of vaccination as part of the response to an outbreak. It also supports the ongoing efforts to establish a cholera vaccine stockpile for emergency use, which would enhance outbreak prevention and control strategies. (Funded by Médecins sans Frontières.).


JAMA | 2009

Effect of Preventive Supplementation With Ready-to-Use Therapeutic Food on the Nutritional Status, Mortality, and Morbidity of Children Aged 6 to 60 Months in Niger: A Cluster Randomized Trial

Sheila Isanaka; Nohelly Nombela; Ali Djibo; Marie Poupard; Dominique Van Beckhoven; Valérie Gaboulaud; Philippe J Guerin; Rebecca F. Grais

CONTEXT Ready-to-use therapeutic foods (RUTFs) are an important component of effective outpatient treatment of severe wasting. However, their effectiveness in the population-based prevention of moderate and severe wasting has not been evaluated. OBJECTIVE To evaluate the effect of a 3-month distribution of RUTF on the nutritional status, mortality, and morbidity of children aged 6 to 60 months in Niger. DESIGN, SETTING, AND PARTICIPANTS A cluster randomized trial of 12 villages in Maradi, Niger. Six villages were randomized to intervention and 6 to no intervention. All children in the study villages aged 6 to 60 months were eligible for recruitment. INTERVENTION Children with weight-for-height 80% or more of the National Center for Health Statistics reference median in the 6 intervention villages received a monthly distribution of 1 packet per day of RUTF (92 g [500 kcal/d]) from August to October 2006. Children in the 6 nonintervention villages received no preventive supplementation. Active surveillance for conditions requiring medical or nutritional treatment was conducted monthly in all 12 study villages from August 2006 to March 2007. MAIN OUTCOME MEASURES Changes in weight-for-height z score (WHZ) according to the World Health Organization Child Growth Standards and incidence of wasting (WHZ <-2) over 8 months of follow-up. RESULTS The number of children with height and weight measurements in August, October, December, and February was 3166, 3110, 2936, and 3026, respectively. The WHZ difference between the intervention and nonintervention groups was -0.10 z (95% confidence interval [CI], -0.23 to 0.03) at baseline and 0.12 z (95% CI, 0.02 to 0.21) after 8 months of follow-up. The adjusted effect of the intervention on WHZ from baseline to the end of follow-up was thus 0.22 z (95% CI, 0.13 to 0.30). The absolute rate of wasting and severe wasting, respectively, was 0.17 events per child-year (140 events/841 child-years) and 0.03 events per child-year (29 events/943 child-years) in the intervention villages, compared with 0.26 events per child-year (233 events/895 child-years) and 0.07 events per child-year (71 events/1029 child-years) in the nonintervention villages. The intervention thus resulted in a 36% (95% CI, 17% to 50%; P < .001) reduction in the incidence of wasting and a 58% (95% CI, 43% to 68%; P < .001) reduction in the incidence of severe wasting. There was no reduction in mortality, with a mortality rate of 0.007 deaths per child-year (7 deaths/986 child-years) in the intervention villages and 0.016 deaths per child-year (18 deaths/1099 child-years) in the nonintervention villages (adjusted hazard ratio, 0.51; 95% CI, 0.25 to 1.05). CONCLUSION Short-term supplementation of nonmalnourished children with RUTF reduced the decline in WHZ and the incidence of wasting and severe wasting over 8 months. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00682708.


Lancet Infectious Diseases | 2009

Burden of disease and circulating serotypes of rotavirus infection in sub-Saharan Africa: systematic review and meta-analysis

Elisabeth Sanchez-Padilla; Rebecca F. Grais; Philippe J Guerin; Andrew Duncan Steele; Marie-Eve Burny; Francisco J. Luquero

Two new rotavirus vaccines have recently been licensed in many countries. However, their efficacy has only been shown against certain serotypes commonly circulating in Europe, North America, and Latin America, but thought to be globally important. To assess the potential impact of these vaccines in sub-Saharan Africa, where rotavirus mortality is high, knowledge of prevalent types is essential because an effective rotavirus vaccine is needed to protect against prevailing serotypes in the community. We did two systematic reviews and two meta-analyses of the most recent published data on the burden of rotavirus disease in children aged under 5 years and rotavirus serotypes circulating in countries in sub-Saharan Africa. Eligible studies were selected from PubMed/Medline, Cochrane Library, EmBase, LILACS, Academic Search Premier, Biological Abstracts, ISI Web of Science, and the African Index Medicus. Depending on the heterogeneity, DerSimonian-Laird random-effects or fixed-effects models were used for meta-analyses. Geographical variability in rotavirus burden within countries in sub-Saharan Africa is substantial, and most countries lack information on rotavirus epidemiology. We estimated that annual mortality for this region was 243.3 (95% CI 187.6-301.7) deaths per 100,000 under 5 years (ie, a total of 300,000 children die of rotavirus infection in this region each year). The most common G type detected was G1 (34.9%), followed by G2 (9.1%), and G3 (8.6%). The most common P types detected were P[8] (35.5%) and P[6] (27.5%). Accurate information should be collected from surveillance based on standardised methods in these countries to obtain comparable data on the burden of disease and the circulating strains to assess the potential impact of vaccine introduction.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

Key strategies for reducing spread of avian influenza among commercial poultry holdings: lessons for transmission to humans.

Arnaud Le Menach; Elisabeta Vergu; Rebecca F. Grais; David L. Smith; Antoine Flahault

Recent avian flu epidemics (A/H5N1) in Southeast Asia and case reports from around the world have led to fears of a human pandemic. Control of these outbreaks in birds would probably lead to reduced transmission of the avian virus to humans. This study presents a mathematical model based on stochastic farm-to-farm transmission that incorporates flock size and spatial contacts to evaluate the impact of control strategies. Fit to data from the recent epidemic in the Netherlands, we evaluate the efficacy of control strategies and forecast avian influenza dynamics. Our results identify high-risk areas of spread by mapping of the farm level reproductive number. Results suggest that an immediate depopulation of infected flocks following an accurate and quick diagnosis would have a greater impact than simply depopulating surrounding flocks. Understanding the relative importance of different control measures is essential for response planning.


PLOS Neglected Tropical Diseases | 2011

The case for reactive mass oral cholera vaccinations

Rita Reyburn; Jacqueline L. Deen; Rebecca F. Grais; Sujit K. Bhattacharya; Dipika Sur; Anna Lena Lopez; Mohamed Saleh Jiddawi; John D. Clemens; Lorenz von Seidlein

Introduction The outbreak of cholera in Zimbabwe intensified interest in the control and prevention of cholera. While there is agreement that safe water, sanitation, and personal hygiene are ideal for the long term control of cholera, there is controversy about the role of newer approaches such as oral cholera vaccines (OCVs). In October 2009 the Strategic Advisory Group of Experts advised the World Health Organization to consider reactive vaccination campaigns in response to large cholera outbreaks. To evaluate the potential benefit of this pivotal change in WHO policy, we used existing data from cholera outbreaks to simulate the number of cholera cases preventable by reactive mass vaccination. Methods Datasets of cholera outbreaks from three sites with varying cholera endemicity—Zimbabwe, Kolkata (India), and Zanzibar (Tanzania)—were analysed to estimate the number of cholera cases preventable under differing response times, vaccine coverage, and vaccine doses. Findings The large cholera outbreak in Zimbabwe started in mid August 2008 and by July 2009, 98,591 cholera cases had been reported with 4,288 deaths attributed to cholera. If a rapid response had taken place and half of the population had been vaccinated once the first 400 cases had occurred, as many as 34,900 (40%) cholera cases and 1,695 deaths (40%) could have been prevented. In the sites with endemic cholera, Kolkata and Zanzibar, a significant number of cases could have been prevented but the impact would have been less dramatic. A brisk response is required for outbreaks with the majority of cases occurring during the early weeks. Even a delayed response can save a substantial number of cases and deaths in long, drawn-out outbreaks. If circumstances prevent a rapid response there are good reasons to roll out cholera mass vaccination campaigns well into the outbreak. Once a substantial proportion of a population is vaccinated, outbreaks in subsequent years may be reduced if not prevented. A single dose vaccine would be of advantage in short, small outbreaks. Conclusions We show that reactive vaccine use can prevent cholera cases and is a rational response to cholera outbreaks in endemic and non-endemic settings. In large and long outbreaks a reactive vaccination with a two-dose vaccine can prevent a substantial proportion of cases. To make mass vaccination campaigns successful, it would be essential to agree when to implement reactive vaccination campaigns and to have a dynamic and determined response team that is familiar with the logistic challenges on standby. Most importantly, the decision makers in donor and recipient countries have to be convinced of the benefit of reactive cholera vaccinations.

Collaboration


Dive into the Rebecca F. Grais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Luquero

European Centre for Disease Prevention and Control

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence Fermon

Médecins Sans Frontières

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Ferrari

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iza Ciglenecki

Médecins Sans Frontières

View shared research outputs
Top Co-Authors

Avatar

Andrea Minetti

Médecins Sans Frontières

View shared research outputs
Top Co-Authors

Avatar

Northan Hurtado

Médecins Sans Frontières

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge