Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca J. Welly is active.

Publication


Featured researches published by Rebecca J. Welly.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction

Victoria J. Vieira-Potter; Jaume Padilla; Young-Min Park; Rebecca J. Welly; Rebecca J. Scroggins; Steven L. Britton; Lauren G. Koch; Nathan T. Jenkins; Jacqueline Marie Crissey; Terese M. Zidon; E. Matthew Morris; Grace M. Meers; John P. Thyfault

Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure.


Medicine and Science in Sports and Exercise | 2016

Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats.

Rebecca J. Welly; Tzu-Wen Liu; Terese M. Zidon; Joe Rowles; Young-Min Park; T. Nicholas Smith; Kelly S. Swanson; Jaume Padilla; Victoria J. Vieira-Potter

UNLABELLED Cardiometabolic impairments that begin early in life are particularly critical, because they often predict metabolic dysfunction in adulthood. Obesity, high-fat diet (HFD), and inactivity are all associated with adipose tissue (AT) inflammation and insulin resistance (IR), major predictors of metabolic dysfunction. Recent evidence has also associated the gut microbiome with cardiometabolic health. PURPOSE The objective of this study is to compare equal energy deficits induced by exercise and caloric reduction on cardiometabolic disease risk parameters including AT inflammation, IR, and gut microbiota changes during HFD consumption. METHODS Obesity-prone rats fed HFD were exercise trained (Ex, n = 10) or weight matched to Ex via caloric reduction although kept sedentary (WM, n = 10), and compared with ad libitum HFD-fed (Sed, n = 10) rats for IR, systemic energetics and spontaneous physical activity (SPA), adiposity, and fasting metabolic parameters. Visceral, subcutaneous, periaortic, and brown AT (BAT), liver, aorta, and cecal digesta were examined. RESULTS Despite identical reductions in adiposity, Ex, but not WM, improved IR, increased SPA by approximately 26% (P < 0.05 compared with WM and Sed), and reduced LDL cholesterol (P < 0.05 compared with Sed). WM and Ex both reduced inflammatory markers in all AT depots and aorta, whereas only Ex increased indicators of mitochondrial function in BAT. Ex significantly increased the relative abundance of cecal Streptococcaceae and decreased S24-7 and one undefined genus in Rikenellaceae; WM induced similar changes but did not reach statistical significance. CONCLUSIONS Both Ex and WM reduced AT inflammation across depots, whereas Ex caused more robust changes to gut microbial communities, improved IR, increased fat oxidation, increased SPA, and increased indices of BAT mitochondrial function. Our findings add to the growing body of literature indicating that there are weight-loss-independent metabolic benefits of exercise.


PLOS ONE | 2015

Physical activity differentially affects the cecal microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity

Tzu-Wen Liu; Young-Min Park; Hannah D. Holscher; Jaume Padilla; Rebecca J. Scroggins; Rebecca J. Welly; Steven L. Britton; Lauren G. Koch; Victoria J. Vieira-Potter; Kelly S. Swanson

The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function.


Obesity | 2015

Disconnect between adipose tissue inflammation and cardiometabolic dysfunction in Ossabaw pigs

Victoria J. Vieira-Potter; Sewon Lee; David S. Bayless; Rebecca J. Scroggins; Rebecca J. Welly; Nicholas J. Fleming; Thomas Smith; Grace M. Meers; Michael A. Hill; R. Scott Rector; Jaume Padilla

The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease because of its size and susceptibility to atherosclerosis, among other characteristics. The relationship between adipose tissue inflammation and metabolic dysfunction in this model was investigated here.


American Journal of Physiology-endocrinology and Metabolism | 2016

Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity

Young-Min Park; R. Scott Rector; John P. Thyfault; Terese M. Zidon; Jaume Padilla; Rebecca J. Welly; Grace M. Meers; Matthew E. Morris; Steven L. Britton; Lauren G. Koch; Frank W. Booth; Jill A. Kanaley; Victoria J. Vieira-Potter

High-capacity running (HCR) rats are protected against the early (i.e., ∼ 11 wk postsurgery) development of ovariectomy (OVX)-induced insulin resistance (IR) compared with low-capacity running (LCR) rats. The purpose of this study was to utilize the hyperinsulinemic euglycemic clamp to determine whether 1) HCR rats remain protected from OVX-induced IR when the time following OVX is extended to 27 wk and 2) tissue-specific glucose uptake differences are responsible for the protection in HCR rats under sedentary conditions. Female HCR and LCR rats (n = 40; aged ∼ 22 wk) randomly received either OVX or sham (SHM) surgeries and then underwent the clamp 27 wk following surgeries. [3-(3)H]glucose was used to determine glucose clearance, whereas 2-[(14)C]deoxyglucose (2-DG) was used to assess glucose uptake in skeletal muscle, brown adipose tissue (BAT), subcutaneous white adipose tissue (WAT), and visceral WAT. OVX decreased the glucose infusion rate and glucose clearance in both lines, but HCR had better insulin sensitivity than LCR (P < 0.05). In both lines, OVX significantly reduced glucose uptake in soleus and gastrocnemius muscles; however, HCR showed ∼ 40% greater gastrocnemius glucose uptake compared with LCR (P < 0.05). HCR also exhibited greater glucose uptake in BAT and visceral WAT compared with LCR (P < 0.05), yet these tissues were not affected by OVX in either line. In conclusion, OVX impairs insulin sensitivity in both HCR and LCR rats, likely driven by impairments in insulin-mediated skeletal muscle glucose uptake. HCR rats have greater skeletal muscle, BAT, and WAT insulin-mediated glucose uptake, which may aid in protection against OVX-associated insulin resistance.


Physiology & Behavior | 2016

Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression

Young-Min Park; Jill A. Kanaley; Jaume Padilla; Terese M. Zidon; Rebecca J. Welly; Matthew J. Will; Steven L. Britton; Lauren G. Koch; Gregory N. Ruegsegger; Frank W. Booth; John P. Thyfault; Victoria J. Vieira-Potter

UNLABELLED Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with the dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. PURPOSE To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. METHODS Forty female HCR and LCR rats (age ~27weeks) had either SHM or OVX operations, and given access to a running wheel for 11weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. RESULTS Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. CONCLUSION The DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, HCR rats are not protected against OVX-induced reduction in wheel running or OVX-mediated reduction in the ratio of excitatory/inhibitory DA receptor mRNA expression. OVX-mediated reduction in motivated physical activity may be partially explained by a reduced ratio of excitatory/inhibitory DA receptor mRNA expression for which intrinsic fitness does not confer protection.


Scientific Reports | 2017

Soy Improves Cardiometabolic Health and Cecal Microbiota in Female Low-Fit Rats

Tzu Wen L. Cross; Terese M. Zidon; Rebecca J. Welly; Young-Min Park; Steven L. Britton; Lauren G. Koch; George E. Rottinghaus; Maria R. C. de Godoy; Jaume Padilla; Kelly S. Swanson; Victoria J. Vieira-Potter

Phytoestrogen-rich soy is known to ameliorate menopause-associated obesity and metabolic dysfunction for reasons that are unclear. The gut microbiota have been linked with the development of obesity and metabolic dysfunction. We aimed to determine the impact of soy on cardiometabolic health, adipose tissue inflammation, and the cecal microbiota in ovariectomized (OVX) rats bred for low-running capacity (LCR), a model that has been previously shown to mimic human menopause compared to sham-operated (SHM) intact control LCR rats. In this study, soy consumption, without affecting energy intake or physical activity, significantly improved insulin sensitivity and body composition of OVX rats bred for low-running capacity. Furthermore, soy significantly improved blood lipid profile, adipose tissue inflammation, and aortic stiffness of LCR rats. Compared to a soy-free control diet, soy significantly shifted the cecal microbial community of LCR rats, resulting in a lower Firmicutes:Bacteroidetes ratio. Correlations among metabolic parameters and cecal bacterial taxa identified in this study suggest that taxa Prevotella, Dorea, and Phascolarctobacterium may be taxa of interest. Our results suggest that dietary soy ameliorates adiposity, insulin sensitivity, adipose tissue inflammation, and arterial stiffness and exerts a beneficial shift in gut microbial communities in a rat model that mimics human menopause.


Medicine and Science in Sports and Exercise | 2017

Voluntary Running Attenuates Metabolic Dysfunction in Ovariectomized Low-Fit Rats.

Young-Min Park; Jaume Padilla; Jill A. Kanaley; Terese M. Zidon; Rebecca J. Welly; Steven L. Britton; Lauren G. Koch; John P. Thyfault; Frank W. Booth; Victoria J. Vieira-Potter

Introduction Ovariectomy and high-fat diet (HFD) worsen obesity and metabolic dysfunction associated with low aerobic fitness. Exercise training mitigates metabolic abnormalities induced by low aerobic fitness, but whether the protective effect is maintained after ovariectomy and HFD is unknown. Purpose This study determined whether, after ovariectomy and HFD, exercise training improves metabolic function in rats bred for low intrinsic aerobic capacity. Methods Female rats selectively bred for low (LCR) and high (HCR) intrinsic aerobic capacity (n = 30) were ovariectomized, fed HFD, and randomized to either a sedentary (SED) or voluntary wheel running (EX) group. Resting energy expenditure, glucose tolerance, and spontaneous physical activity were determined midway through the experiment, whereas body weight, wheel running volume, and food intake were assessed throughout the study. Body composition, circulating metabolic markers, and skeletal muscle gene and protein expression were measured at sacrifice. Results EX reduced body weight and adiposity in LCR rats (−10% and −50%, respectively; P < 0.05) and, unexpectedly, increased these variables in HCR rats (+7% and +37%, respectively; P < 0.05) compared with their respective SED controls, likely because of dietary overcompensation. Wheel running volume was approximately fivefold greater in HCR than LCR rats, yet EX enhanced insulin sensitivity equally in LCR and HCR rats (P < 0.05). This EX-mediated improvement in metabolic function was associated with thee gene upregulation of skeletal muscle interleukin-6 and interleukin-10. EX also increased resting energy expenditure, skeletal muscle mitochondrial content (oxidative phosphorylation complexes and citrate synthase activity), and adenosine monophosphate-activated protein kinase activation similarly in both lines (all P <0.05). Conclusion Despite a fivefold difference in running volume between rat lines, EX similarly improved systemic insulin sensitivity, resting energy expenditure, and skeletal muscle mitochondrial content and adenosine monophosphate-activated protein kinase activation in ovariectomized LCR and HCR rats fed HFD compared with their respective SED controls.


American Journal of Physiology-endocrinology and Metabolism | 2017

Deletion of UCP1 enhances ex vivo aortic vasomotor function in female but not male mice despite similar susceptibility to metabolic dysfunction

Nathan C. Winn; Zachary I. Grunewald; Michelle L. Gastecki; Makenzie L. Woodford; Rebecca J. Welly; Stephanie L. Clookey; James R. Ball; T’Keaya L. Gaines; Natalia G. Karasseva; Jill A. Kanaley; Harold S. Sacks; Victoria J. Vieira-Potter; Jaume Padilla

Females are typically more insulin sensitive than males, which may be partly attributed to greater brown adipose tissue (BAT) activity and uncoupling protein 1 (UCP1) content. Accordingly, we tested the hypothesis that UCP1 deletion would abolish sex differences in insulin sensitivity and that whitening of thoracic periaortic BAT caused by UCP1 loss would be accompanied with impaired thoracic aortic function. Furthermore, because UCP1 exerts antioxidant effects, we examined whether UCP1 deficiency-induced metabolic dysfunction was mediated by oxidative stress. Compared with males, female mice had lower HOMA- and AT-insulin resistance (IR) despite no significant differences in BAT UCP1 content. UCP1 ablation increased HOMA-IR, AT-IR, and whitening of BAT in both sexes. Expression of UCP1 in thoracic aorta was greater in wild-type females compared with males. Importantly, deletion of UCP1 enhanced aortic vasomotor function in females only. UCP1 ablation did not promote oxidative stress in interscapular BAT. Furthermore, daily administration of the free radical scavenger tempol for 8 wk did not abrogate UCP1 deficiency-induced increases in adiposity, hyperinsulinemia, or liver steatosis. Collectively, we report that 1) in normal chow-fed mice housed at 25°C, aortic UCP1 content was greater in females than males and its deletion improved ex vivo aortic vasomotor function in females only; 2) constitutive UCP1 content in BAT was similar between females and males and loss of UCP1 did not abolish sex differences in insulin sensitivity; and 3) the metabolic disruptions caused by UCP1 ablation did not appear to be contingent upon increased oxidative stress in mice under normal dietary conditions.


Adipocyte | 2018

Voluntary wheel running improves adipose tissue immunometabolism in ovariectomized low-fit rats

Terese M. Zidon; Young-Min Park; Rebecca J. Welly; Makenzie L. Woodford; Rebecca J. Scroggins; Steven L. Britton; Lauren G. Koch; Frank W. Booth; Jaume Padilla; Jill A. Kanaley; Victoria J. Vieira-Potter

ABSTRACT Loss of ovarian hormones is associated with increased adiposity, white adipose tissue (WAT) inflammation, and insulin resistance (IR). Previous work demonstrated ovariectomized (OVX) rats bred for high aerobic fitness (HCR) are protected against weight gain and IR compared to rats bred for low aerobic fitness (LCR) yet wheel running prevents OVX-induced IR in LCR rats. The purpose of this study was to determine whether adipose tissue immunometabolic characteristics from female HCR and LCR rats differs before or after OVX, and whether wheel running mitigates OVX-induced adipose tissue immunometabolic changes in LCR rats. Female OVX HCR and LCR rats were all fed a high fat diet (HFD) (n = 7–8/group) and randomized to either a running wheel or remain sedentary for 11 weeks. Ovary-intact rats (n = 7–12/group) were fed a standard chow diet with no wheel. Ovary-intact LCR rats had a greater visceral WAT inflammatory profile compared to HCR. Following OVX, sedentary LCR rats had greater serum leptin (p<0.001) and WAT inflammation (p<0.05) than sedentary HCR. Wheel running normalized the elevated serum leptin and reduced both visceral (p<0.05) and subcutaneous (p<0.03) WAT inflammatory markers in the LCR rats. Paradoxically, wheel running increased some markers of WAT inflammation in OVX HCR rats (p<0.05), which correlated with observed weight gain. Taken together, HCR rats appear to have a healthier WAT immune and metabolic profile compared to LCR, even following OVX. Wheel running improves WAT health in previously sedentary LCR rats. On the other hand, increased WAT inflammation is associated with adiposity gain despite a high volume of wheel running in HCR rats.

Collaboration


Dive into the Rebecca J. Welly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Min Park

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge