Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria J. Vieira-Potter is active.

Publication


Featured researches published by Victoria J. Vieira-Potter.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues

Jaume Padilla; Nathan T. Jenkins; Victoria J. Vieira-Potter; M. Harold Laughlin

Perivascular adipose tissue (PVAT) is implicated as a source of proatherogenic cytokines. Phenotypic differences in local PVAT depots may contribute to differences in disease susceptibility among arteries and even regions within an artery. It has been proposed that PVAT around the abdominal and thoracic aorta shares characteristics of white and brown adipose tissue (BAT), respectively; however, a detailed comparison of the phenotype of these PVAT depots has not been performed. Using young and older adult rats, we compared the phenotype of PVATs surrounding the abdominal and thoracic aorta to each other and also to epididymal white and subscapular BAT. Compared with young rats, older rats exhibited greater percent body fat (34.5 ± 3.1 vs. 10.4 ± 0.9%), total cholesterol (112.2 ± 7.5 vs. 58.7 ± 6.3 mg/dl), HOMA-insulin resistance (1.7 ± 0.1 vs. 0.9 ± 0.1 a.u.), as well as reduced ACh-induced relaxation of the aorta (maximal relaxation: 54 ± 10 vs. 77 ± 6%) (all P < 0.05). Expression of inflammatory genes and markers of immune cell infiltration were greater in abdominal PVAT than in thoracic PVAT, and overall, abdominal and thoracic PVATs resembled the phenotype of white adipose tissue (WAT) and BAT, respectively. Histology and electron microscopy indicated structural similarity between visceral WAT and abdominal PVAT and between BAT and thoracic PVAT. Our data provide evidence that abdominal PVAT is more inflamed than thoracic PVAT, a difference that was by and large independent of sedentary aging. Phenotypic differences in PVAT between regions of the aorta may be relevant in light of the evidence in large animals and humans that the abdominal aorta is more vulnerable to atherosclerosis than the thoracic aorta.


Cellular Microbiology | 2014

Inflammation and macrophage modulation in adipose tissues.

Victoria J. Vieira-Potter

The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro‐inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro‐inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti‐inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction

Victoria J. Vieira-Potter; Jaume Padilla; Young-Min Park; Rebecca J. Welly; Rebecca J. Scroggins; Steven L. Britton; Lauren G. Koch; Nathan T. Jenkins; Jacqueline Marie Crissey; Terese M. Zidon; E. Matthew Morris; Grace M. Meers; John P. Thyfault

Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure.


Mediators of Inflammation | 2012

Exercise Training Effects on Inflammatory Gene Expression in White Adipose Tissue of Young Mice

Tracy Baynard; Victoria J. Vieira-Potter; Rudy J. Valentine; Jeffrey A. Woods

We aimed to determine the effects of 6 wks of exercise on inflammatory markers in mice concomitantly fed either high-fat (HF) or normal chow (NC) diets in young mice. C57BL/6 mice were randomized into (n = 10/group) an NC/sedentary (NC/SED), NC/exercise (NC/EX), HF/SED, and HF/EX groups. Treadmill exercise was performed 5 d/wk at 12 m/min, with 12% grade for 40 min/d. Liver triglycerides and gene expression of F4/80, MCP-1, TNF-α, leptin, and VEGF in visceral white adipose were determined. NC groups had lower body weights after 6 wks versus the HF groups (22.8 ± 0.2 versus 25.7 ± 0.4 g) (P < 0.0001). F4/80 gene expression (indicator of macrophage infiltration) and liver triglycerides were greatest amongst the HF/SED group, with no differences between the remaining groups. VEGF (indicator of angiogenesis) was greatest in the HF/EX versus the other 3 groups (P < 0.05). Exposure of an HF diet in sedentary young mice increased visceral adipose depots and liver triglycerides versus an NC diet. Exercise training while on the HF diet protected against hepatic steatosis and possibly macrophage infiltration within white adipose tissue. This suggests that moderate exercise while on an HF diet can offer some level of protection early on in the development of obesity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Adipose tissue and vascular phenotypic modulation by voluntary physical activity and dietary restriction in obese insulin-resistant OLETF rats.

Jacqueline M. Crissey; Nathan T. Jenkins; Kasey A. Lansford; Pamela K. Thorne; David S. Bayless; Victoria J. Vieira-Potter; R. Scott Rector; John P. Thyfault; M. Harold Laughlin; Jaume Padilla

Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.


Medicine and Science in Sports and Exercise | 2016

Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats.

Rebecca J. Welly; Tzu-Wen Liu; Terese M. Zidon; Joe Rowles; Young-Min Park; T. Nicholas Smith; Kelly S. Swanson; Jaume Padilla; Victoria J. Vieira-Potter

UNLABELLED Cardiometabolic impairments that begin early in life are particularly critical, because they often predict metabolic dysfunction in adulthood. Obesity, high-fat diet (HFD), and inactivity are all associated with adipose tissue (AT) inflammation and insulin resistance (IR), major predictors of metabolic dysfunction. Recent evidence has also associated the gut microbiome with cardiometabolic health. PURPOSE The objective of this study is to compare equal energy deficits induced by exercise and caloric reduction on cardiometabolic disease risk parameters including AT inflammation, IR, and gut microbiota changes during HFD consumption. METHODS Obesity-prone rats fed HFD were exercise trained (Ex, n = 10) or weight matched to Ex via caloric reduction although kept sedentary (WM, n = 10), and compared with ad libitum HFD-fed (Sed, n = 10) rats for IR, systemic energetics and spontaneous physical activity (SPA), adiposity, and fasting metabolic parameters. Visceral, subcutaneous, periaortic, and brown AT (BAT), liver, aorta, and cecal digesta were examined. RESULTS Despite identical reductions in adiposity, Ex, but not WM, improved IR, increased SPA by approximately 26% (P < 0.05 compared with WM and Sed), and reduced LDL cholesterol (P < 0.05 compared with Sed). WM and Ex both reduced inflammatory markers in all AT depots and aorta, whereas only Ex increased indicators of mitochondrial function in BAT. Ex significantly increased the relative abundance of cecal Streptococcaceae and decreased S24-7 and one undefined genus in Rikenellaceae; WM induced similar changes but did not reach statistical significance. CONCLUSIONS Both Ex and WM reduced AT inflammation across depots, whereas Ex caused more robust changes to gut microbial communities, improved IR, increased fat oxidation, increased SPA, and increased indices of BAT mitochondrial function. Our findings add to the growing body of literature indicating that there are weight-loss-independent metabolic benefits of exercise.


PLOS ONE | 2015

Physical activity differentially affects the cecal microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity

Tzu-Wen Liu; Young-Min Park; Hannah D. Holscher; Jaume Padilla; Rebecca J. Scroggins; Rebecca J. Welly; Steven L. Britton; Lauren G. Koch; Victoria J. Vieira-Potter; Kelly S. Swanson

The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function.


Endocrinology | 2017

Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors

Deborah J. Clegg; Andrea L. Hevener; Kerrie L. Moreau; Eugenia Morselli; Alfredo Criollo; Rachael E. Van Pelt; Victoria J. Vieira-Potter

With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions.


Obesity | 2015

Disconnect between adipose tissue inflammation and cardiometabolic dysfunction in Ossabaw pigs

Victoria J. Vieira-Potter; Sewon Lee; David S. Bayless; Rebecca J. Scroggins; Rebecca J. Welly; Nicholas J. Fleming; Thomas Smith; Grace M. Meers; Michael A. Hill; R. Scott Rector; Jaume Padilla

The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease because of its size and susceptibility to atherosclerosis, among other characteristics. The relationship between adipose tissue inflammation and metabolic dysfunction in this model was investigated here.


The Journal of Physiology | 2016

Aerobic exercise training in the treatment of non-alcoholic fatty liver disease related fibrosis.

Melissa A. Linden; Ryan D. Sheldon; Grace M. Meers; Laura C. Ortinau; E. Matthew Morris; Frank W. Booth; Jill A. Kanaley; Victoria J. Vieira-Potter; James R. Sowers; Jamal A. Ibdah; John P. Thyfault; M. Harold Laughlin; R. Scott Rector

Physiologically relevant rodent models of non‐alcoholic steatohepatitis (NASH) that resemble the human condition are limited. Exercise training and energy restriction are first‐line recommendations for the treatment of NASH. Hyperphagic Otsuka Long–Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype. Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling. The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease.

Collaboration


Dive into the Victoria J. Vieira-Potter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Min Park

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge