Rebecca Kellum
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca Kellum.
Cell | 1997
Daniel T. S. Pak; Michelle Pflumm; Igor Chesnokov; Da Wei Huang; Rebecca Kellum; Jacqueline Marr; Piotr Romanowski; Michael R. Botchan
The origin recognition complex (ORC) is required to initiate eukaryotic DNA replication and also engages in transcriptional silencing in S. cerevisiae. We observed a striking preferential but not exclusive association of Drosophila ORC2 with heterochromatin on interphase and mitotic chromosomes. HP1, a heterochromatin-localized protein required for position effect variegation (PEV), colocalized with DmORC2 at these sites. Consistent with this localization, intact DmORC and HP1 were found in physical complex. The association was shown biochemically to require the chromodomain and shadow domains of HP1. The amino terminus of DmORC1 contained a strong HP1-binding site, mirroring an interaction found independently in Xenopus by a yeast two-hybrid screen. Finally, heterozygous DmORC2 recessive lethal mutations resulted in a suppression of PEV. These results indicate that ORC may play a widespread role in packaging chromosomal domains through interactions with heterochromatin-organizing factors.
Nature Cell Biology | 2003
Giovanni Cenci; Giorgia Siriaco; Grazia D. Raffa; Rebecca Kellum; Maurizio Gatti
HOAP (HP1/ORC-associated protein) has recently been isolated from Drosophila melanogaster embryos as part of a cytoplasmic complex that contains heterochromatin protein 1 (HP1) and the origin recognition complex subunit 2 (ORC2). Here, we show that caravaggio, a mutation in the HOAP-encoding gene, causes extensive telomere–telomere fusions in larval brain cells, indicating that HOAP is required for telomere capping. Our analyses indicate that HOAP is specifically enriched at mitotic chromosome telomeres, and strongly suggest that HP1 and HOAP form a telomere-capping complex that does not contain ORC2.
The EMBO Journal | 1994
Jordan W. Raff; Rebecca Kellum; Bruce Alberts
In virtually all eukaryotes the centromeric regions of chromosomes are composed of heterochromatin, a specialized form of chromatin that is rich in repetitive DNA sequences and is transcriptionally relatively silent. The Drosophila GAGA transcription factor binds to GA/CT‐rich sequences in many Drosophila promoters, where it activates transcription, apparently by locally altering chromatin structure and allowing other transcription factors access to the DNA. Here we report the paradoxical finding that GAGA factor is associated with specific regions of heterochromatin at all stages of the cell cycle. A subset of the highly repetitive DNA sequences that make up the bulk of heterochromatin in D. melanogaster are GA/CT‐rich and we find a striking correlation between the distribution of GAGA factor and this class of repeat. We propose that GAGA factor binds directly to these repeats and may thereby play a role in modifying heterochromatin structure in these regions. Our observations demonstrate for the first time that a transcriptional regulator can associate with specific DNA sequences in a fully condensed mitotic chromosome. This may help explain how the distinctive character of a committed or differentiated cell can be maintained during cell proliferation.
Journal of Cell Biology | 2002
Svetlana Rashkova; Sarah E. Karam; Rebecca Kellum; Mary Lou Pardue
Drosophila telomeres are formed by two non-LTR retrotransposons, HeT-A and TART, which transpose only to chromosome ends. Successive transpositions of these telomeric elements yield arrays that are functionally equivalent to the arrays generated by telomerase in other organisms. In contrast, other Drosophila non-LTR retrotransposons transpose widely through gene-rich regions, but not to ends. The two telomeric elements encode very similar Gag proteins, suggesting that Gag may be involved in their unique targeting to chromosome ends. To test the intrinsic potential of these Gag proteins for targeting, we tagged the coding sequences with sequence of GFP and expressed the constructs in transiently transfected Drosophila-cultured cells. Gag proteins from both elements are efficiently transported into the nucleus where the protein from one element, HeT-A, forms structures associated with chromosome ends in interphase nuclei. Gag from the second element, TART, moves into telomere-associated structures only when coexpressed with HeT-A Gag. The results suggest that these Gag proteins are capable of delivering the retrotransposons to telomeres, although TART requires assistance from HeT-A. They also imply a symbiotic relationship between the two elements, with HeT-A Gag directing the telomere-specific targeting of the elements, whereas TART provides reverse transcriptase for transposition.
Chromosoma | 2005
RamaKrishna Badugu; Youngdong Yoo; Prim B. Singh; Rebecca Kellum
Heterochromatin Protein 1 (HP1) is a conserved component of the highly compact chromatin found at centromeres and telomeres. A conserved feature of the protein is multiple phosphorylation. Hyper-phosphorylation of HP1 accompanies the assembly of cytologically distinct heterochromatin during early embryogenesis. Hypo-phosphorylated HP1 is associated with the DNA-binding activities of the origin recognition complex (ORC) and an HMG-like HP1/ORC-Associated Protein (HOAP). Perturbations in HP1 localization in pericentric and telomeric heterochromatin in mutants for Drosophila ORC2 and HOAP, respectively, indicate roles for these HP1 phosphoisoforms in heterochromatin assembly also. To elucidate the roles of hypo- and hyper-phosphophorylated HP1 in heterochromatin assembly, we have mutated consensus Protein Kinase-A phosphorylation sites in the HP1 hinge domain and examined the mutant proteins for distinct in vitro and in vivo activities. Mutations designed to mimic hyper-phosphorylation render the protein incapable of binding HOAP and the DmORC1 subunit but confer enhanced homo-dimerization and lysine 9-methylated histone H3-binding to the protein. Mutations rendering the protein unphosphorylatable, by contrast, do not affect homo-dimerization or binding to lysine 9-di-methylated histone H3, HOAP, or DmORC1 but do confer novel DmORC2-binding activity to the protein. This mutant protein is ectopically localized throughout the chromosomes when overexpressed in vivo in the presence of a full dose of DmORC2. This ectopic targeting is accompanied by ectopic targeting of lysine 9 tri-methylated histone H3. The distinct activities of these mutant proteins could reflect distinct roles for HP1 phosphoisoforms in heterochromatin structure and function.
Current Topics in Microbiology and Immunology | 2003
Rebecca Kellum
Since its discovery almost two decades ago, heterochromatin protein 1 (HP1) has emerged as a major player in the transcriptional regulation of both heterochromatic and euchromatic genes as well as the mechanics of chromosome segregation and the functional and structural organization of the interphase nucleus. Recent years have brought the identification of a myriad of HP1-interacting proteins. Each of these is discussed in relationship to its role in heterochromatin assembly and HP1 function. The breadth of functions represented by HP1-interacting proteins testifies to its pivotal role in the daily operations of the nucleus.
Journal of Biological Chemistry | 2003
RamaKrishna Badugu; Mohammed M. Shareef; Rebecca Kellum
Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.
Current Biology | 1998
Rebecca Kellum; Sarah C. R. Elgin
Transcriptional enhancers are constrained to act within domains defined by boundary elements. How these elements work is a mystery. A recent study emphasizes their autonomous activity; another emphasizes their dependence on nuclear organization. Both effects need to be accounted for by any successful model.
Genetica | 2003
Mohammed M. Shareef; RamaKrishna Badugu; Rebecca Kellum
We have used the highly conserved heterochromatin component, heterochromatin protein 1 (HP1), as a molecular tag for purifying other protein components of Drosophila heterochromatin. A complex of HP1 associated with the origin recognition complex (ORC) and an HP1/ORC-associated protein (HOAP) was purified from the maternally loaded cytoplasm of early Drosophila embryo. We propose that the DNA-binding activities of ORC and HOAP function to recruit underphosphorylated isoforms of HP1 to sites of heterochromatin nucleation. The roles of highly phosphorylated HP1, other DNA-binding proteins known to interact with HP1, and histone modifying activities in heterochromatin assembly are also addressed.
Journal of Cell Biology | 2003
Rebecca Kellum
Heterochromatin is defined as regions of compact chromatin that persist throughout the cell cycle (Heitz, 1928). The earliest cytological observations of heterochromatin were followed by ribonucleotide labeling experiments that showed it to be transcriptionally inert relative to the more typical euchromatic regions that decondense during interphase. Genetic studies of rearrangements that place euchromatic genes next to blocks of heterochromatin also pointed out the repressive nature of heterochromatin (Grigliatti, 1991; and references therein). The discovery of the heterochromatin-enriched protein heterochromatin protein 1 (HP1)* by Elgin and co-workers in the mid-1980s suggested that the distinct cytological features of this chromatin may be related to its unique nucleoprotein composition (James and Elgin, 1986; James et al., 1989). HP1 immunostaining on polytene chromosomes from Drosophila larval salivary glands was used to show enrichment of the protein in pericentric heterochromatin. Since that initial discovery, HP1 homologues have been found in species ranging from fission yeast to humans where it is associated with gene silencing (Eissenberg and Elgin, 2000; and references therein). A number of euchromatic sites of localization were also reported in this original study. It has been generally assumed that these sites might constitute euchromatic sites of transcriptional repression by HP1. Indeed, several genes located at one of these sites (cytological region 31) have increased transcript levels in mutants for HP1 (Hwang et al., 2001).