Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca Slater is active.

Publication


Featured researches published by Rebecca Slater.


Circulation | 2015

Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection Fraction Contributions of Collagen and Titin

Michael R. Zile; Catalin F. Baicu; John S. Ikonomidis; Robert E. Stroud; Paul J. Nietert; Amy D. Bradshaw; Rebecca Slater; Bradley M. Palmer; Peter Van Buren; Markus Meyer; Margaret M. Redfield; David A. Bull; Henk Granzier; Martin M. LeWinter

Background— The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. Methods and Results— Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (–) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(–)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(–)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. Conclusions— Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Deleting titin’s I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function

Henk Granzier; Kirk R. Hutchinson; Paola Tonino; Mei Methawasin; Frank Li; Rebecca Slater; Mathew M. Bull; Chandra Saripalli; Christopher T. Pappas; Carol C. Gregorio; John E. Smith

Significance Mutations in titin are a major cause of heart failure, yet the functions of large parts of titin are not understood. Here we studied titin’s I-band/A-band junction that has been proposed to be crucial for thick filament length control. We made a mouse in which titin’s IA junction was deleted. Super-resolution microscopy (structured illumination microscopy) revealed that deleting the IA junction increases the strain on titin’s molecular spring elements without altering thick filament length. Single cell biomechanical measurements showed that this increases passive stiffness while functional studies at the whole animal level revealed diastolic dysfunction, exercise intolerance, and modest concentric cardiac hypertrophy—signature features of heart failure with preserved ejection fraction. Our studies support that titin is a promising therapeutic target for treating heart failure. Titin, the largest protein known, forms a giant filament in muscle where it spans the half sarcomere from Z disk to M band. Here we genetically targeted a stretch of 14 immunoglobulin-like and fibronectin type 3 domains that comprises the I-band/A-band (IA) junction and obtained a viable mouse model. Super-resolution optical microscopy (structured illumination microscopy, SIM) and electron microscopy were used to study the thick filament length and titin’s molecular elasticity. SIM showed that the IA junction functionally belongs to the relatively stiff A-band region of titin. The stiffness of A-band titin was found to be high, relative to that of I-band titin (∼40-fold higher) but low, relative to that of the myosin-based thick filament (∼70-fold lower). Sarcomere stretch therefore results in movement of A-band titin with respect to the thick filament backbone, and this might constitute a novel length-sensing mechanism. Findings disproved that titin at the IA junction is crucial for thick filament length control, settling a long-standing hypothesis. SIM also showed that deleting the IA junction moves the attachment point of titin’s spring region away from the Z disk, increasing the strain on titin’s molecular spring elements. Functional studies from the cellular to ex vivo and in vivo left ventricular chamber levels showed that this causes diastolic dysfunction and other symptoms of heart failure with preserved ejection fraction (HFpEF). Thus, our work supports titin’s important roles in diastolic function and disease of the heart.


Circulation | 2016

Experimentally Increasing the Compliance of Titin Through RNA Binding Motif-20 (RBM20) Inhibition Improves Diastolic Function In a Mouse Model of Heart Failure With Preserved Ejection Fraction

Mei Methawasin; Joshua Strom; Rebecca Slater; Vanessa Fernandez; Chandra Saripalli; Henk Granzier

Background: Left ventricular (LV) stiffening contributes to heart failure with preserved ejection fraction (HFpEF), a syndrome with no effective treatment options. Increasing the compliance of titin in the heart has become possible recently through inhibition of the splicing factor RNA binding motif-20. Here, we investigated the effects of increasing the compliance of titin in mice with diastolic dysfunction. Methods: Mice in which the RNA recognition motif (RRM) of one of the RNA binding motif-20 alleles was floxed and that expressed the MerCreMer transgene under control of the &agr;MHC promoter (referred to as cRbm20&Dgr;RRM mice) were used. Mice underwent transverse aortic constriction (TAC) surgery and deoxycorticosterone acetate (DOCA) pellet implantation. RRM deletion in adult mice was triggered by injecting raloxifene (cRbm20&Dgr;RRM-raloxifene), with dimethyl sulfoxide (DMSO)–injected mice (cRbm20&Dgr;RRM-DMSO) as the control. Diastolic function was investigated with echocardiography and pressure-volume analysis; passive stiffness was studied in LV muscle strips and isolated cardiac myocytes before and after elimination of titin-based stiffness. Treadmill exercise performance was also studied. Titin isoform expression was evaluated with agarose gels. Results: cRbm20&Dgr;RRM-raloxifene mice expressed large titins in the hearts, called supercompliant titin (N2BAsc), which, within 3 weeks after raloxifene injection, made up ≈45% of total titin. TAC/DOCA cRbm20&Dgr;RRM-DMSO mice developed LV hypertrophy and a marked increase in LV chamber stiffness as shown by both pressure-volume analysis and echocardiography. LV chamber stiffness was normalized in TAC/DOCA cRbm20&Dgr;RRM-raloxifene mice that expressed N2BAsc. Passive stiffness measurements on muscle strips isolated from the LV free wall revealed that extracellular matrix stiffness was equally increased in both groups of TAC/DOCA mice (cRbm20&Dgr;RRM-DMSO and cRbm20&Dgr;RRM-raloxifene). However, titin-based muscle stiffness was reduced in the mice that expressed N2BAsc (TAC/DOCAcRbm20&Dgr;RRM-raloxifene). Exercise testing demonstrated significant improvement in exercise tolerance in TAC/DOCA mice that expressed N2BAsc. Conclusions: Inhibition of the RNA binding motif-20–based titin splicing system upregulates compliant titins, which improves diastolic function and exercise tolerance in the TAC/DOCA model. Titin holds promise as a therapeutic target for heart failure with preserved ejection fraction.


Human Molecular Genetics | 2015

Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy

Frank Li; Danielle Buck; Josine M. de Winter; Justin Kolb; Hui Meng; Camille Birch; Rebecca Slater; Yael Natelie Escobar; John E. Smith; Lin Yang; John P. Konhilas; Michael W. Lawlor; C. Ottenheijm; Henk Granzier

Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulins functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness.


Journal of Molecular and Cellular Cardiology | 2017

Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction

Rebecca Slater; Joshua Strom; Henk Granzier

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome, characterized by increased diastolic stiffness and a preserved ejection fraction, with no effective treatment options. Here we studied the therapeutic potential of exercise for improving diastolic function in a mouse model with HFpEF-like symptoms, the TtnΔIAjxn mouse model. TtnΔIAjxn mice have increased diastolic stiffness and reduced exercise tolerance, mimicking aspects of HFpEF observed in patients. We investigated the effect of free-wheel running exercise on diastolic function. Mechanical studies on cardiac muscle strips from the LV free wall revealed that both TtnΔIAjxn and wildtype (WT) exercised mice had a reduction in passive stiffness, relative to sedentary controls. In both genotypes, this reduction is due to an increase in the compliance of titin whereas ECM-based stiffness was unaffected. Phosphorylation of titins PEVK and N2B spring elements were assayed with phospho-site specific antibodies. Exercised mice had decreased PEVK phosphorylation and increased N2B phosphorylation both of which are predicted to contribute to the increased compliance of titin. Since exercise lowers the heart rate we examined whether reduction in heart rate per se can improve passive stiffness by administering the heart-rate-lowering drug ivabradine. Ivabradine lowered heart rate in our study but it did not affect passive tension, in neither WT nor TtnΔIAjxn mice. We conclude that exercise is beneficial for decreasing passive stiffness and that it involves beneficial alterations in titin phosphorylation.


Circulation | 2015

Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection Fraction

Michael R. Zile; Catalin F. Baicu; John S. Ikonomidis; Robert E. Stroud; Paul J. Nietert; Amy D. Bradshaw; Rebecca Slater; Bradley M. Palmer; Peter Van Buren; Markus Meyer; Margaret M. Redfield; David A. Bull; Henk Granzier; Martin M. LeWinter

Background— The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. Methods and Results— Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (–) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(–)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(–)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. Conclusions— Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.


Circulation | 2015

Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection FractionCLINICAL PERSPECTIVE

Michael R. Zile; Catalin F. Baicu; John S. Ikonomidis; Robert E. Stroud; Paul J. Nietert; Amy D. Bradshaw; Rebecca Slater; Bradley M. Palmer; Peter Van Buren; Markus Meyer; Margaret M. Redfield; David A. Bull; Henk Granzier; Martin M. LeWinter

Background— The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. Methods and Results— Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (–) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(–)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(–)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. Conclusions— Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.


Circulation | 2015

Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection FractionCLINICAL PERSPECTIVE: Contributions of Collagen and Titin

Michael R. Zile; Catalin F. Baicu; John S. Ikonomidis; Robert E. Stroud; Paul J. Nietert; Amy D. Bradshaw; Rebecca Slater; Bradley M. Palmer; Peter Van Buren; Markus Meyer; Margaret M. Redfield; David A. Bull; Henk Granzier; Martin M. LeWinter

Background— The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. Methods and Results— Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (–) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(–)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(–)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. Conclusions— Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.


Biophysical Journal | 2015

Phosphorylating Titin’s Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force

John Perkin; Rebecca Slater; Giorgia Del Favero; Thomas Lanzicher; Carlos Hidalgo; Brian Anderson; John E. Smith; Orfeo Sbaizero; Siegfried Labeit; Henk Granzier


Biophysical Journal | 2018

A Novel Mouse Model for Titin-Based Dilated Cardiomyopathy

Eyad Nusayr; Joshua Strom; Rebecca Slater; Henk Granzier

Collaboration


Dive into the Rebecca Slater's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy D. Bradshaw

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catalin F. Baicu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Ikonomidis

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge