Rebecca Soffe
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca Soffe.
Lab on a Chip | 2014
Sofia Nahavandi; Sara Baratchi; Rebecca Soffe; Shi-Yang Tang; Saeid Nahavandi; Arnan Mitchell; Khashayar Khoshmanesh
Biomarkers have been described as characteristics, most often molecular, that provide information about biological states, whether normal, pathological, or therapeutically modified. They hold great potential to assist diagnosis and prognosis, monitor disease, and assess therapeutic effectiveness. While a few biomarkers are routinely utilised clinically, these only reflect a very small percentage of all biomarkers discovered. Numerous factors contribute to the slow uptake of these new biomarkers, with challenges faced throughout the biomarker development pipeline. Microfluidics offers two important opportunities to the field of biomarkers: firstly, it can address some of these developmental obstacles, and secondly, it can provide the precise and complex platform required to bridge the gap between biomarker research and the biomarker-based analytical device market. Indeed, adoption of microfluidics has provided a new avenue for advancement, promoting clinical utilisation of both biomarkers and their analytical platforms. This review will discuss biomarkers and outline microfluidic platforms developed for biomarker analysis.
Small | 2014
Sofia Nahavandi; Shi-Yang Tang; Sara Baratchi; Rebecca Soffe; Saeid Nahavandi; Kourosh Kalantar-zadeh; Arnan Mitchell; Khashayar Khoshmanesh
Intercellular signalling has been identified as a highly complex process, responsible for orchestrating many physiological functions. While conventional methods of investigation have been useful, their limitations are impeding further development. Microfluidics offers an opportunity to overcome some of these limitations. Most notably, microfluidic systems can emulate the in-vivo environments. Further, they enable exceptionally precise control of the microenvironment, allowing complex mechanisms to be selectively isolated and studied in detail. There has thus been a growing adoption of microfluidic platforms for investigation of cell signalling mechanisms. This review provides an overview of the different signalling mechanisms and discusses the methods used to study them, with a focus on the microfluidic devices developed for this purpose.
Scientific Reports | 2015
Khashayar Khoshmanesh; Abdullah Almansouri; Hamad Albloushi; Pyshar Yi; Rebecca Soffe; Kourosh Kalantar-zadeh
Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics.
Scientific Reports | 2015
Rebecca Soffe; Sara Baratchi; Shi-Yang Tang; Mahyar Nasabi; Peter McIntyre; Arnan Mitchell; Khashayar Khoshmanesh
Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.
Analytical and Bioanalytical Chemistry | 2015
Shi-Yang Tang; Pyshar Yi; Rebecca Soffe; Sofia Nahavandi; Ravi Shukla; Khashayar Khoshmanesh
Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes.
Analytical Chemistry | 2015
Rebecca Soffe; Shi-Yang Tang; Sara Baratchi; Sofia Nahavandi; Mahyar Nasabi; Jonathan M. Cooper; Arnan Mitchell; Khashayar Khoshmanesh
The localized motion of cells within a cluster is an important feature of living organisms and has been found to play roles in cell signaling, communication, and migration, thus affecting processes such as proliferation, transcription, and organogenesis. Current approaches for inducing dynamic movement into cells, however, focus predominantly on mechanical stimulation of single cells, affect cell integrity, and, more importantly, need a complementary mechanism to pattern cells. In this article, we demonstrate a new strategy for the mechanical stimulation of large cell clusters, taking advantage of dielectrophoresis. This strategy is based on the cellular spin resonance mechanism, but it utilizes coating agents, such as bovine serum albumin, to create consistent rotation and vibration of individual cells. The treatment of cells with coating agents intensifies the torque induced on the cells while reducing the friction at the cell-cell and cell-substrate interfaces, resulting in the consistent motion of the cells. Such localized motion can be modulated by varying the frequency and voltage of the applied sinusoidal AC signal and can be achieved in the absence and presence of flow. This strategy enables the survival and functioning of moving cells within large-scale clusters to be investigated.
PLOS ONE | 2014
Shi-Yang Tang; Wei Zhang; Rebecca Soffe; Sofia Nahavandi; Ravi Shukla; Khashayar Khoshmanesh
Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment.
Applied Physics Letters | 2014
Khashayar Khoshmanesh; Wei Zhang; Shi-Yang Tang; Mahyar Nasabi; Rebecca Soffe; Francisco J. Tovar-Lopez; Jayakumar Rajadas; Arnan Mitchell
Here, we demonstrate the unique features of a hydrodynamic based microchip for creating continuous chains of model yeast cells. The system consists of a disk shaped microfluidic structure, containing narrow orifices that connect the main channel to an array of spoke channels. Negative pressure provided by a syringe pump draws fluid from the main channel through the narrow orifices. After cleaning process, a thin layer of water is left between the glass substrate and the polydimethylsiloxane microchip, enabling leakage beneath the channel walls. A mechanical clamp is used to adjust the operation of the microchip. Relaxing the clamp allows leakage of liquid beneath the walls in a controllable fashion, leading to formation of a long cell chain evenly distributed along the channel wall. The unique features of the microchip are demonstrated by creating long chains of yeast cells and model 15 μm polystyrene particles along the side wall and analysing the hydrogen peroxide induced death of patterned cells.
biomedical engineering systems and technologies | 2016
Rebecca Soffe; Sara Baratchi; Shi-Yang Tang; Peter McIntyre; Arnan Mitchell; Khashayar Khoshmanesh
The functioning of cells under mechanical stress influences several cellular processes, for example proliferation, organogenesis, and transcription. Current techniques used to examine mechanical stress on loosely adherent cells, are however, primarily focused on single individual cells being stimulated, or require time-consuming surface coating techniques; and are limited in the level of shear stress that can be supplied to immobilised cells. Here we report the process of the technique, discontinuous dielectrophoresis; which enables high shear stress analysis of clusters of immobilised loosely adherent cells, we have analysed the performance of the system using Saccharomyces cerevisiae yeast cells, up to a shear stress of 42 dyn/cm2. Additionally, we provide application experimental results from investigating shear induced calcium signalling of HEK-293-TRPV4 cells at flow rates of 2.5, and 120 µl/min, corresponding to shear stress levels of 0.875 and 42 dyn/cm2, respectively. In summary, discontinuous dielectrophoresis will enable the investigation of the mechanotransduction behaviour of loosely adherent cells under physiologically relevant shear stresses. Additionally, discontinuous dielectrophoresis provides the capability for parallelism, and dynamic control over the microenvironment, as previously explored by different microfluidic platforms without the capacity for high shear stress analysis of loosely adherent cells.
Scientific Reports | 2018
Khashayar Khoshmanesh; Abdullah Almansouri; Hamad Albloushi; Pyshar Yi; Rebecca Soffe; Kourosh Kalantar-zadeh
This corrects the article DOI: 10.1038/srep09942.