Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecka Hellsten is active.

Publication


Featured researches published by Rebecka Hellsten.


PLOS ONE | 2011

Galiellalactone Inhibits Stem Cell-Like ALDH-Positive Prostate Cancer Cells

Rebecka Hellsten; Martin Johansson; Anna K Dahlman; Olov Sterner; Anders Bjartell

Galiellalactone is a potent and specific inhibitor of STAT3 signaling which has been shown to possess growth inhibitory effects on prostate cancer cells expressing active STAT3. In this study we aimed to investigate the effect of galiellalactone on prostate cancer stem cell-like cells. We explored the expression of aldehyde dehydrogenase (ALDH) as a marker for cancer stem cell-like cells in different human prostate cancer cell lines and the effects of galiellalactone on ALDH expressing (ALDH+) prostate cancer cells. ALDH+ subpopulations were detected and isolated from the human prostate cancer cell lines DU145 and long-term IL-6 stimulated LNCaP cells using ALDEFLUOR® assay and flow cytometry. In contrast to ALDH− cells, ALDH+ prostate cancer cells showed cancer stem cell-like characteristics such as increased self-renewing and colony forming capacity and tumorigenicity. In addition, ALDH+ cells showed an increased expression of putative prostate cancer stem cell markers (CD44 and integrin α2β1). Furthermore, ALDH+ cells expressed phosphorylated STAT3. Galiellalactone treatment decreased the proportion of ALDH+ prostate cancer cells and induced apoptosis of ALDH+ cells. The gene expression of ALDH1A1 was downregulated in vivo in galiellalactone treated DU145 xenografts. These findings emphasize that targeting the STAT3 pathway in prostate cancer cells, including prostate cancer stem cell-like cells, is a promising therapeutic approach and that galiellalactone is an interesting compound for the development of future prostate cancer drugs.


The Prostate | 2008

Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3.

Rebecka Hellsten; Martin H Johansson; Anna K Dahlman; Nishtman Dizeyi; Olov Sterner; Anders Bjartell

Signal transducer and activator of transcription 3 (Stat3) is constitutively active (phosphorylated) in several forms of cancer, including prostate cancer (PCa). Stat3 signaling may be an interesting target for cancer therapy since inhibition of this pathway mediates growth inhibition and apoptosis of these cells. In this study we investigated the in vitro and in vivo effects of the fungal metabolite galiellalactone, a direct inhibitor of Stat3, on PCa cells.


Journal of Biological Chemistry | 2014

Galiellalactone is a Direct Inhibitor of STAT3 in Prostate Cancer Cells.

Nicholas Don-Doncow; Zilma Escobar; Martin H Johansson; Sven Kjellström; Víctor Julio Atencio García; Eduardo Muñoz; Olov Sterner; Anders Bjartell; Rebecka Hellsten

Background: STAT3 is constitutively active in castration-resistant prostate cancer and the fungal metabolite galiellalactone inhibits STAT3 signaling. Results: Galiellalactone binds covalently to one or more cysteines in STAT3 and prevents STAT3 binding to DNA. Conclusion: Galiellalactone inhibits STAT3 signaling by binding directly to STAT3. Significance: Galiellalactone is a promising direct STAT3 inhibitor for treatment of castration-resistant prostate cancer. The transcription factor STAT3 is constitutively active in several malignancies including castration-resistant prostate cancer and has been identified as a promising therapeutic target. The fungal metabolite galiellalactone, a STAT3 signaling inhibitor, inhibits the growth, both in vitro and in vivo, of prostate cancer cells expressing active STAT3 and induces apoptosis of prostate cancer stem cell-like cells expressing phosphorylated STAT3 (pSTAT3). However, the molecular mechanism of this STAT3-inhibiting effect by galiellalactone has not been clarified. A biotinylated analogue of galiellalactone (GL-biot) was synthesized to be used for identification of galiellalactone target proteins. By adding streptavidin-Sepharose beads to GL-biot-treated DU145 cell lysates, STAT3 was isolated and identified as a target protein. Confocal microscopy revealed GL-biot in both the cytoplasm and the nucleus of DU145 cells treated with GL-biot, appearing to co-localize with STAT3 in the nucleus. Galiellalactone inhibited STAT3 binding to DNA in DU145 cell lysates without affecting phosphorylation status of STAT3. Mass spectrometry analysis of recombinant STAT3 protein pretreated with galiellalactone revealed three modified cysteines (Cys-367, Cys-468, and Cys-542). Here we demonstrate with chemical and molecular pharmacological methods that galiellalactone is a cysteine reactive inhibitor that covalently binds to one or more cysteines in STAT3 and that this leads to inhibition of STAT3 binding to DNA and thus blocks STAT3 signaling without affecting phosphorylation. This further validates galiellalactone as a promising direct STAT3 inhibitor for treatment of castration-resistant prostate cancer.


European Urology | 2016

The STAT3 Inhibitor Galiellalactone Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse Model of Prostate Cancer

Giacomo Canesin; Susan Evans-Axelsson; Rebecka Hellsten; Olov Sterner; Agnieszka Krzyzanowska; Tommy Andersson; Anders Bjartell

UNLABELLED Signal transducer and activator of transcription 3 (STAT3) is known to be involved in the progression of prostate cancer (PCa) and is a key factor in drug resistance and tumor immunoescape. As a result, it represents a promising target for PCa therapy. We studied the effects of the STAT3 inhibitor galiellalactone (GL) on tumor growth and metastatic spread in vitro and in vivo. The effect of GL on cell viability, apoptosis, and invasion was studied in vitro using androgen-independent DU145 and DU145-Luc cell lines. For in vivo studies, mice were injected orthotopically with DU145-Luc cells and treated with daily intraperitoneal injections of GL for 6 wk. GL significantly reduced the growth of the primary tumor and the metastatic spread of PCa cells to regional and distal lymph nodes in vivo. Treatment with GL also resulted in decreased cell proliferation and increased apoptosis compared with controls. In vitro, GL reduces the viability and invasive abilities of DU145-Luc cells and induces apoptosis. Our results showed that tumor growth and early metastatic dissemination of PCa can be significantly reduced by GL, indicating its potential use as a therapeutic compound in advanced metastatic PCa. PATIENT SUMMARY In this study, we tested the STAT3 inhibitor galiellalactone (GL) in an animal model of PCa. We found that mice treated with GL had smaller primary tumors and decreased lymph node metastases compared with mice treated with vehicle. GL has potential for treating advanced metastatic PCa.


European Urology | 2017

Expression of STAT3 in Prostate Cancer Metastases

Nicholas Don-Doncow; Felicia Elena Marginean; Ilsa Coleman; Peter S. Nelson; Roy Ehrnström; Agnieszka Krzyzanowska; Colm Morrissey; Rebecka Hellsten; Anders Bjartell

STAT3 and its upstream activator IL6R have been implicated in the progression of prostate cancer and are possible future therapeutic targets. We analyzed 223 metastatic samples from rapid autopsies of 71 patients who had died of castration-resistant prostate cancer (CRPC) to study protein and gene expression of pSTAT3 and IL6R. Immunohistochemical analysis revealed that 95% of metastases were positive for pSTAT3 and IL6R, with varying expression levels. Bone metastases showed significantly higher expression of both pSTAT3 and IL6R in comparison to lymph node and visceral metastases. STAT3 mRNA levels were significantly higher in bone than in lymph node and visceral metastases, whereas no significant difference in IL6R mRNA expression was observed. Our study strongly supports the suggested view of targeting STAT3 as a therapeutic option in patients with metastatic CRPC. PATIENT SUMMARY We studied the levels of two proteins (pSTAT3 and IL6R) in metastases from patients who died from castration-resistant prostate cancer. We found high levels of pSTAT3and IL6R in bone metastases, suggesting that these proteins could be used as targets for new anticancer drugs.


Biological Chemistry | 2007

A highly conserved protein secreted by the prostate cancer cell line PC-3 is expressed in benign and malignant prostate tissue

Camilla Valtonen-André; Anders Bjartell; Rebecka Hellsten; Hans Lilja; Pirkko Härkönen; Åke Lundwall

Abstract In this study we characterize a novel gene on human chromosome 9 and its translation product, PC3-secreted microprotein (PSMP). The gene contains three exons that encode a protein of 139 amino acid residues, including a predicted signal peptide of 36 residues. The molecule is homologous to β-microseminoprotein (MSP), a protein of unknown function, secreted at high concentration by the prostate gland. These two proteins have only 23% sequence identity, but their common origin is revealed by a preserved pattern of Cys residues. In contrast to MSP, which shows poor conservation between species, PSMP is very conserved. High transcript levels were detected in the prostate cancer cell line PC-3. Antiserum raised against PSMP detected a protein with an apparent molecular mass of 18 kDa in culture medium conditioned by PC-3 cells, but in cell lysates the antiserum also recognized a molecular species of 16 kDa, suggesting that PSMP undergoes post-translational modification. Xenografted PC-3 cell tumors in athymic nude mice showed strong staining for both PSMP protein and mRNA. Studies on human prostate cancer specimens showed immunohistochemical staining of both tumor and benign glandular cells. Our results suggest that PSMP is an important protein with significance in prostate cancer.


Chemico-Biological Interactions | 2014

The fungal metabolite galiellalactone interferes with the nuclear import of NF-κB and inhibits HIV-1 replication

Moisés Pérez; Rafael Soler-Torronteras; Juan A. Collado; Carmen G Limones; Rebecka Hellsten; Martin H Johansson; Olov Sterner; Anders Bjartell; Marco A. Calzado; Eduardo Muñoz

Galiellalactone (GL) is a metabolite produced by the fungus Galiella rufa that presents antitumor and immunomodulatory activities. GL interferes with the binding to DNA of signal transducer and activator of transcription (STAT)-3 and also inhibits other signal pathways such as NF-κB, but the mechanism of action in this pathway remains unknown. In this study we report that GL inhibits vesicular stomatitis virus-recombinant HIV-1 infection and the NF-κB-dependent transcriptional activity of the HIV-LTR promoter. We found that GL prevents the binding of NF-κB to DNA but neither affects the phosphorylation and degradation of NF-κB inhibitory protein, IκBα, nor the phosphorylation and acetylation of the NF-κB p65 subunit. However, GL prevents the association of p65 with the importin α3 impairing the nuclear translocation of this transcription factor. Using a biotinylated probe we found that GL binds to p65 but not to importin α3. Therefore, GL is a dual NF-κB/STAT3 inhibitor that could serve as a lead compound for the development of novel drugs against HIV-1, cancer and inflammatory diseases.


Molecular Cancer Research | 2015

Therapeutic Targeting of Nuclear Gamma-Tubulin in RB1-negative Tumors

Lisa Lindström; Bruno O. Villoutreix; Sophie Lehn; Rebecka Hellsten; Elise Nilsson; Enisa Crneta; Roger Olsson; Maria Alvarado-Kristensson

In addition to its cytosolic function, γ-tubulin is a chromatin-associated protein. Reduced levels of nuclear γ-tubulin increase the activity of E2 promoter-binding factors (E2F) and raise the levels of retinoblastoma (RB1) tumor suppressor protein. In tumor cells lacking RB1 expression, decreased γ-tubulin levels induce cell death. Consequently, impairment of the nuclear activity of γ-tubulin has been suggested as a strategy for targeted chemotherapy of RB1-deficient tumors; thus, tubulin inhibitors were tested to identify compounds that interfere with γ-tubulin. Interestingly, citral increased E2F activity but impaired microtubule dynamics while citral analogues, such citral dimethyl acetal (CDA), increased E2F activity without affecting microtubules. The cytotoxic effect of CDA on tumor cells was attenuated by increased expression of either RB1 or γ-tubulin, and increased by reduced levels of either RB1 or γ-tubulin. Mechanistic study, in silico and in vitro, demonstrated that CDA prevents GTP binding to γ-tubulin and suggested that the FDA-approved drug dimethyl fumarate is also a γ-tubulin inhibitor. Finally, in vivo growth of xenograft tumors carrying defects in the RB1 signaling pathway were inhibited by CDA treatment. These results demonstrate that inhibition of γ-tubulin has the potential to specifically target tumor cells and may aid in the design of safer and more efficient chemotherapeutic regimes. Implications: The in vivo antitumorigenic activity of γ-tubulin inhibitors paves the way for the development of a novel broad range targeted anticancer therapy that causes fewer side effects. Mol Cancer Res; 13(7); 1073–82. ©2015 AACR.


PLOS ONE | 2017

Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model

Giacomo Canesin; Susan Evans-Axelsson; Rebecka Hellsten; Agnieszka Krzyzanowska; Chandra Prakash Prasad; Anders Bjartell; Tommy Andersson

Prostate cancer patients with high WNT5A expression in their tumors have been shown to have more favorable prognosis than those with low WNT5A expression. This suggests that reconstitution of Wnt5a in low WNT5A-expressing tumors might be an attractive therapeutic approach. To explore this idea, we have in the present study used Foxy-5, a WNT5A mimicking peptide, to investigate its impact on primary tumor and metastasis in vivo and on prostate cancer cell viability, apoptosis and invasion in vitro. We used an in vivo orthotopic xenograft mouse model with metastatic luciferase-labeled WNT5A-low DU145 cells and metastatic luciferase-labeled WNT5A-high PC3prostate cancer cells. We provide here the first evidence that Foxy-5 significantly inhibits the initial metastatic dissemination of tumor cells to regional and distal lymph nodes by 90% and 75%, respectively. Importantly, this effect was seen only with the WNT5A-low DU145 cells and not with the WNT5A-high PC3 cells. The inhibiting effect in the DU145-based model occurred despite the fact that no effects were observed on primary tumor growth, apoptosis or proliferation. These findings are consistent with and supported by the in vitro data, where Foxy-5 specifically targets invasion without affecting apoptosis or viability of WNT5A-low prostate cancer cells. To conclude, our data indicate that the WNT5A-mimicking peptide Foxy-5, which has been recently used in a phase 1 clinical trial, is an attractive candidate for complimentary anti-metastatic treatment of prostate cancer patients with tumors exhibiting absent or low WNT5A expression.


Journal of Medicinal Chemistry | 2016

Preclinical Characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ,3-dihydrogaliellalactone (GPA512), a Prodrug of a Direct STAT3 Inhibitor for the Treatment of Prostate Cancer

Zilma Escobar; Anders Bjartell; Giacomo Canesin; Susan Evans-Axelsson; Olov Sterner; Rebecka Hellsten; Martin H Johansson

The transcription factor STAT3 is a potential target for the treatment of castration-resistant prostate cancer. Galiellalactone (1), a direct inhibitor of STAT3, prevents the transcription of STAT3 regulated genes. In this study we characterized 6 (GPA512, Johansson , M. ; Sterner , O. Patent WO 2015/132396 A1, 2015 ), a prodrug of 1. In vitro studies showed that 6 is rapidly converted to 1 in plasma and is stable in a buffer solution. The pharmacokinetics of 6 following a single oral dose indicated that the prodrug was rapidly absorbed and converted to 1 with a tmax of 15 min. Oral administration of 6 in mice increased the plasma exposure of the active parent compound 20-fold compared to when 1 was dosed orally. 6 treated mice bearing DU145 xenograft tumors had significantly reduced tumor growth compared to untreated mice. The favorable druglike properties and safety profile of 6 warrant further studies of 6 for the treatment of castration-resistant prostate cancer.

Collaboration


Dive into the Rebecka Hellsten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge