Refilwe Edwin Mapasha
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Refilwe Edwin Mapasha.
RSC Advances | 2016
Okikiola Olaniyan; Refilwe Edwin Mapasha; Damilola Y. Momodu; M.J. Madito; A.A. Kahleed; F.U. Ugbo; Abdulhakeem Bello; Farshad Barzegar; Kabir O. Oyedotun; Ncholu I. Manyala
The South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation (NRF) of South Africa (Grant No. 97994). O. Okikiola acknowledges the financial support from NRF and the University of Pretoria for his PhD studies. Remove selected
Journal of Chemical Physics | 2013
Richard Charles Andrew; Refilwe Edwin Mapasha; Nithaya Chetty
Using first principle methods, we study the mechanical properties of monolayer and bilayer graphene with 50% and 100% coverage of hydrogen. We employ the vdW-DF, vdW-DF-C09x, and vdW-DF2-C09x van der Waals functionals for the exchange correlation interactions that give significantly improved interlayer spacings and energies. We also use the PBE form for the generalized gradient corrected exchange correlation functional for comparison. We present a consistent theoretical framework for the in-plane layer modulus and the out-of-plane interlayer modulus and we calculate, for the first time, these properties for these systems. This gives a measure of the change of the strength properties when monolayer and bilayer graphene are hydrogenated. Moreover, comparing the relative performance of these functionals in describing hydrogenated bilayered graphenes, we also benchmark these functionals in how they calculate the properties of graphite.
Journal of Physics: Condensed Matter | 2016
Refilwe Edwin Mapasha; Mahlanga P. Molepo; Richard Charles Andrew; Nithaya Chetty
We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q = -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.
Journal of Physics: Condensed Matter | 2018
Emmanuel Igumbor; Okikiola Olaniyan; Refilwe Edwin Mapasha; Helga T. Danga; Ezekiel Omotoso; W.E. Meyer
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H-SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H-SiC are presented. We explore complexes where substitutional N[Formula: see text]/N[Formula: see text] or B[Formula: see text]/B[Formula: see text] sits near a Si (V[Formula: see text]) or C (V[Formula: see text]) vacancy to form vacancy-complexes (N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text]). The energies of formation of the N related vacancy-complexes showed the N[Formula: see text]V[Formula: see text] to be energetically stable close to the valence band maximum in its double positive charge state. The N[Formula: see text]V[Formula: see text] is more energetically stable in the double negative charge state close to the conduction band minimum. The N[Formula: see text]V[Formula: see text] on the other hand, induced double donor level and the N[Formula: see text]V[Formula: see text] induced a double acceptor level. For B related complexes, the B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text] were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the B[Formula: see text]V[Formula: see text] become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
RSC Advances | 2017
Refilwe Edwin Mapasha; M.P. Molepo; Nithaya Chetty
Using a hybrid density functional theory approach, we have studied the effect of the interaction of a Li atom with a C–H pair vacancy defect (VCH) in a graphane monolayer on the thermodynamic stability, structural, magnetic and electronic properties, taking into account the effect of charge doping. We found that a Li atom and charge doping enhanced the thermodynamic stability of a VCH defective graphane monolayer. The Li–VCH system may likely act as a single deep donor, and can readily compensate the acceptor. The effects of Li introduce more occupied states in the band gap, and there exists strong hybridization between the C 2p states and Li 2s states at the vicinity of the Fermi level (EF) responsible for the large magnetic moment noted. The −1 charge doping (Li1−–VCH) further populates the occupied states in the band gap, shifting the EF towards the conduction band minimum. Consequently, the Li1−–VCH system possesses spintronic effects such as half-metallic ferromagnetic character and pronounced magnetism. The +1 charge doping (Li1+–VCH) removes some of the Li induced occupied states, slightly shifting the EF towards the valence band maximum leading to a reduction in the magnetic moment. Our findings give an explanation of the origin of magnetism in a VCH defective graphane system and suggest a possible practical way of controlling it.
Journal of Physics: Condensed Matter | 2017
N.F. Andriambelaza; Refilwe Edwin Mapasha; Nithaya Chetty
Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegards law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.
Journal of Physics: Conference Series | 2016
Refilwe Edwin Mapasha; Emmanuel Igumbor; Nithaya Chetty
We present a hybrid density functional study of silicon (Si) and phosphorus (P) doped hexagonal boron nitride (h-BN). The local geometry, electronic structure and thermodynamic stability of Si B , Si N , P B and P N are examined using hybrid Heyd-Scuseria- Ernzerhof (HSE) functional. The defect induced buckling and the local bond distances around the defect are sensitive to charge state modulation q = -2, -1, 0, +1 and +2. The +1 charge state is found to be the most energetically stable state and significantly reduces the buckling. Based on the charge state thermodynamic transition levels, we noted that the Si N , Si N and P B defects are too deep to be ionized, and can alter the optical properties of h-BN material.
Physical Review B | 2012
Richard Charles Andrew; Refilwe Edwin Mapasha; Aniekan Magnus Ukpong; Nithaya Chetty
Physical Review B | 2012
Refilwe Edwin Mapasha; Aniekan Magnus Ukpong; Nithaya Chetty
Computational Materials Science | 2010
Refilwe Edwin Mapasha; Nithaya Chetty