Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regine Mühlfriedel is active.

Publication


Featured researches published by Regine Mühlfriedel.


Molecular Therapy | 2010

Restoration of Cone Vision in the CNGA3 −/− Mouse Model of Congenital Complete Lack of Cone Photoreceptor Function

Stylianos Michalakis; Regine Mühlfriedel; Naoyuki Tanimoto; Vidhyasankar Krishnamoorthy; Susanne Koch; M. Dominik Fischer; Elvir Becirovic; Lin Bai; Gesine Huber; Susanne C. Beck; Edda Fahl; Hildegard Büning; François Paquet-Durand; Xiangang Zong; Tim Gollisch; Martin Biel; Mathias W. Seeliger

Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.


Human Molecular Genetics | 2011

A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa

François Paquet-Durand; Susanne C. Beck; Stylianos Michalakis; Tobias Goldmann; Gesine Huber; Regine Mühlfriedel; Dragana Trifunović; M. Dominik Fischer; Edda Fahl; Gabriele Duetsch; Elvir Becirovic; Uwe Wolfrum; Theo van Veen; Martin Biel; Naoyuki Tanimoto; Mathias W. Seeliger

The rd1 natural mutant is one of the first and probably the most commonly studied mouse model for retinitis pigmentosa (RP), a severe and frequently blinding human retinal degeneration. In several decades of research, the link between the increase in photoreceptor cGMP levels and the extremely rapid cell death gave rise to a number of hypotheses. Here, we provide clear evidence that the presence of cyclic nucleotide gated (CNG) channels in the outer segment membrane is the key to rod photoreceptor loss. In Cngb1(-/-) × rd1 double mutants devoid of regular CNG channels, cGMP levels are still pathologically high, but rod photoreceptor viability and outer segment morphology are greatly improved. Importantly, cone photoreceptors, the basis for high-resolution daylight and colour vision, survived and remained functional for extended periods of time. These findings strongly support the hypothesis of deleterious calcium (Ca(2+))-influx as the cause of rapid rod cell death and highlight the importance of CNG channels in this process. Furthermore, our findings suggest that targeting rod CNG channels, rather than general Ca(2+)-channel blockade, is a most promising symptomatic approach to treat otherwise incurable forms of cGMP-related RP.


PLOS ONE | 2014

Towards a quantitative OCT image analysis.

Marina Garcia Garrido; Susanne C. Beck; Regine Mühlfriedel; Sylvie Julien; Ulrich Schraermeyer; Mathias W. Seeliger

Background Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study. Methods Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-Laser Ophthalmoscopy (SLO), and Fluorescein Angiography (FA) were performed in mice (Mus musculus), gerbils (Gerbillus perpadillus), and cynomolgus monkeys (Macaca fascicularis) using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer). Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/). Results Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates) with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP), the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated. Conclusions OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the potential of this approach in the long-term follow-up of therapeutic strategies.


Methods of Molecular Biology | 2012

Optimized Technique for Subretinal Injections in Mice

Regine Mühlfriedel; Stylianos Michalakis; Marina Garcia Garrido; Martin Biel; Mathias W. Seeliger

Subretinal injections in mice become increasingly important. Currently, the most prominent application is in gene therapy of inherited eye diseases by means of viral vector delivery to photoreceptors or the retinal pigment epithelium (RPE). Since there are no large animal models for most of these diseases, genetically modified mouse models are commonly used in preclinical proof-of-concept studies. However, because of the relatively small mouse eye, adverse effects of the subretinal delivery procedure itself may interfere with the therapeutic outcome. The protocol described here concerns a transscleral pars plana subretinal injection in small eyes, and may be used for but not limited to virus-mediated gene transfer.


Investigative Ophthalmology & Visual Science | 2010

In vivo assessment of retinal vascular wall dimensions.

M. D. Fischer; Gesine Huber; Yuxi Feng; Naoyuki Tanimoto; Regine Mühlfriedel; Susanne C. Beck; E Tröger; Christoph Kernstock; Markus N. Preising; Birgit Lorenz; Hans-Peter Hammes; Mathias W. Seeliger

PURPOSE Retinal blood vessel diameter and arteriovenous ratio (AVR) are commonly used diagnostic parameters. Because vascular walls are typically not visible in funduscopy, clinical AVR estimation is based on the lumen rather than the entire vessel diameter. Here the authors used a transgenic mouse model to quantify AVR in vivo based on total vessel dimensions (wall and lumen). METHODS Confocal scanning laser ophthalmoscopy (cSLO) and indocyanine green angiography of the retinal vasculature were performed in wild-type and transgenic mice expressing green fluorescent protein (GFP) under the transcriptional control of the smooth muscle type α-actin (αSMA) promoter. Spectral-domain-OCT and ERG were performed to control for integrity of retinal structure and function in vivo and histology to demonstrate the location of GFP expression. RESULTS Native cSLO imaging and angiography yielded only inner vessel diameters similar to those observed through clinical funduscopy. In αSMA-GFP mice, autofluorescence imaging of the GFP-marked vascular walls also allowed the determination of outer vessel diameters. The mean AVR based on either inner diameter (AVR(id) = 0.72 ± 0.08) or outer diameter (AVR(od) = 0.97 ± 0.09) measurements were significantly different (P < 0.01). CONCLUSIONS Transgenic αSMA-GFP expression in murine vessel wall components allowed quantification of retinal vessel outer diameters in vivo. Although arterioles and venules differ in lumen and vessel wall width, they share a common outer diameter, leading to an AVR(od) close to unity. Because vessel walls are primary targets in common hypertensive and metabolic diseases, αSMA-GFP transgenic mice may prove valuable in the detailed assessment of such disorders in vivo.


Human Molecular Genetics | 2015

Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype

Vithiyanjali Sothilingam; Marina Garcia Garrido; Kangwei Jiao; Elena Buena-Atienza; Ayse Sahaboglu; Dragana Trifunović; Sukirthini Balendran; Tanja Koepfli; Regine Mühlfriedel; Christian Schön; Martin Biel; Angelique Heckmann; Susanne C. Beck; Stylianos Michalakis; Bernd Wissinger; Mathias W. Seeliger; François Paquet-Durand

Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions.


Frontiers in Neuroscience | 2017

AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects

Regine Mühlfriedel; Naoyuki Tanimoto; Christian Schön; Vithiyanjali Sothilingam; Marina Garcia Garrido; Susanne C. Beck; Gesine Huber; Martin Biel; Mathias W. Seeliger; Stylianos Michalakis

Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV) vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F) and AAV2/8 (Y733F), on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG) and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse model extends at least to an age of 3 months, but is presumably limited by the condition, number and topographical distribution of remaining cones at the time of treatment. No impact of the choice of capsid on the therapeutic success was detected.


Advances in Experimental Medicine and Biology | 2014

Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.

Stylianos Michalakis; Susanne Koch; Sothilingam; Garcia Garrido M; Naoyuki Tanimoto; Schulze E; Elvir Becirovic; Fred Koch; Christina Seide; Susanne C. Beck; Mathias W. Seeliger; Regine Mühlfriedel; Martin Biel

Retinitis pigmentosa (RP) is a severe retinal disease characterized by a progressive degeneration of rod photoreceptors and a secondary loss of cone function. Here, we used CNGB1-deficient (CNGB1(-/-)) mice, a mouse model for autosomal recessive RP, to evaluate the efficacy of adeno-associated virus (AAV) vector-mediated gene therapy for the treatment of RP. The treatment restored normal expression of rod CNG channels and rod-driven light responses in the CNGB1(-/-) retina. This led to a substantial delay of retinal degeneration and long-term preservation of retinal morphology. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this study holds promise for the treatment of rod channelopathy-associated retinitis pigmentosa by AAV-mediated gene replacement.


PLOS ONE | 2013

Successful Subretinal Delivery and Monitoring of MicroBeads in Mice

M. Dominik Fischer; Tobias Goldmann; Christine Wallrapp; Regine Mühlfriedel; Susanne C. Beck; Gabi Stern-Schneider; Marius Ueffing; Uwe Wolfrum; Mathias W. Seeliger

Background To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads) in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity. Methodology/Principal Findings MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT). Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue. Conclusions/Significance The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads) promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.


PLOS ONE | 2015

Scale Adjustments to Facilitate Two-Dimensional Measurements in OCT Images.

Marina Garcia Garrido; Regine Mühlfriedel; Susanne C. Beck; Christine Wallrapp; Mathias W. Seeliger

Purpose To address the problem of unequal scales for the measurement of two-dimensional structures in OCT images, and demonstrate the use of intra¬ocular objects of known dimensions in the murine eye for the equal calibration of axes. Methods The first part of this work describes the mathematical foundation of major distortion effects introduced by X-Y scaling differences. Illustrations were generated with CorelGraph X3 software. The second part bases on image data obtained with a HRA2 Spectralis (Heidelberg Engineering) in SV129 wild-type mice. Subretinally and intravitreally implanted microbeads, alginate capsules with a diameter of 154±5 μm containing GFP-marked mesenchymal stem cells (CellBeads), were used as intraocular objects for calibration. Results The problems encountered with two-dimensional measurements in cases of unequal scales are demonstrated and an estimation of the resulting errors is provided. Commonly, the Y axis is reliably calibrated using outside standards like histology or manufacturer data. We show here that intraocular objects like dimensionally stable spherical alginate capsules allow for a two-dimensional calibration of the acquired OCT raw images by establishing a relation between X and Y axis data. For our setup, a correction factor of about 3.3 was determined using both epiretinally and subretinally positioned beads (3.350 ± 0.104 and 3.324 ± 0.083, respectively). Conclusions In this work, we highlight the distortion-related problems in OCT image analysis induced by unequal X and Y scales. As an exemplary case, we provide data for a two-dimensional in vivo OCT image calibration in mice using intraocular alginate capsules. Our results demonstrate the need for a proper two-dimensional calibration of OCT data, and we believe that equal scaling will certainly improve the efficiency of OCT image analysis.

Collaboration


Dive into the Regine Mühlfriedel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stylianos Michalakis

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar

Martin Biel

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gesine Huber

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Christian Schön

Center for Integrated Protein Science Munich

View shared research outputs
Researchain Logo
Decentralizing Knowledge