Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regis Gomes is active.

Publication


Featured researches published by Regis Gomes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model

Regis Gomes; Clarissa Teixeira; Maria Jânia Teixeira; Fabiano Oliveira; Maria José Menezes; Claire Silva; Camila I. de Oliveira; José Carlos Miranda; Dia-Eldin Elnaiem; Shaden Kamhawi; Jesus G. Valenzuela; Cláudia Brodskyn

Visceral leishmaniasis (VL) is a fatal disease for humans, and no vaccine is currently available. Sand fly salivary proteins have been associated with protection against cutaneous leishmaniasis. To test whether vector salivary proteins can protect against VL, a hamster model was developed involving intradermal inoculation in the ears of 100,000 Leishmania infantum chagasi parasites together with Lutzomyia longipalpis saliva to mimic natural transmission by sand flies. Hamsters developed classical signs of VL rapidly, culminating in a fatal outcome 5–6 months postinfection. Saliva had no effect on the course of infection in this model. Immunization with 16 DNA plasmids coding for salivary proteins of Lu. longipalpis resulted in the identification of LJM19, a novel 11-kDa protein, that protected hamsters against the fatal outcome of VL. LJM19-immunized hamsters maintained a low parasite load that correlated with an overall high IFN-γ/TGF-β ratio and inducible NOS expression in the spleen and liver up to 5 months postinfection. Importantly, a delayed-type hypersensitivity response with high expression of IFN-γ was also noted in the skin of LJM19-immunized hamsters 48 h after exposure to uninfected sand fly bites. Induction of IFN-γ at the site of bite could partly explain the protection observed in the viscera of LJM19-immunized hamsters through direct parasite killing and/or priming of anti-Leishmania immunity. We have shown that immunity to a defined salivary protein (LJM19) confers powerful protection against the fatal outcome of a parasitic disease, which reinforces the concept of using components of arthropod saliva in vaccine strategies against vector-borne diseases.


The Journal of Infectious Diseases | 2002

Seroconversion against Lutzomyia longipalpis Saliva Concurrent with the Development of Anti–Leishmania chagasi Delayed-Type Hypersensitivity

Regis Gomes; Cláudia Brodskyn; Camila I. de Oliveira; Jackson Maurício Lopes Costa; José Carlos Miranda; Arlene de Jesus Mendes Caldas; Jesus G. Valenzuela; Manoel Barral-Netto; Aldina Barral

Antibody responses to salivary gland sonicate (SGS) from Lutzomyia longipalpis were investigated using serum samples from individuals living in an area where visceral leishmaniasis is endemic. Individuals were classified into 2 groups, according to the alteration of their responses to Leishmania chagasi antigen over the course of 6 months. Group 1 included children who experienced anti-L. chagasi seroconversion from negative to positive; group 2 included children who experienced delayed-type hypersensitivity (DTH) response to L. chagasi antigen conversion from negative to positive. Individuals who experienced seroconversion against L. chagasi antigens did not have increased anti-saliva antibody response, whereas those who developed a positive anti-L. chagasi DTH response had increased immunoglobulin (Ig) G, IgG1 and IgE anti-SGS antibody levels. Despite wide variation, serum samples from individuals in group 2 recognized more bands in SGS than did those from individuals in group 1. This simultaneous appearance of anti-saliva humoral response and anti-L. chagasi cell-mediated immunity supports the hypothesis that induction of immune response against SGS can facilitate induction of a protective response against leishmaniasis.


Infection and Immunity | 2001

Mannan-Binding Lectin Enhances Susceptibility to Visceral Leishmaniasis

Isabel Kinney Ferreira de Miranda Santos; Carlos Henrique Nery Costa; Henrique Krieger; Mary F. Feitosa; David Zurakowski; Babak Fardin; Regis Gomes; Debra L. Weiner; Donald A. Harn; R. Alan B. Ezekowitz; Judith Epstein

ABSTRACT Levels of the serum opsonin mannan-binding lectin (MBL) were directly correlated with the probability of developing visceral leishmaniasis. Monocytes infected with MBL-opsonized Leishmania chagasi promastigotes secreted higher levels of tumor necrosis factor alpha and interleukin-6 than cells infected with nonopsonized parasites. Our findings indicate that MBL can modulate the clinical outcome of infection with L. chagasi and the function of infected macrophages.


PLOS Pathogens | 2009

Sand Fly Salivary Proteins Induce Strong Cellular Immunity in a Natural Reservoir of Visceral Leishmaniasis with Adverse Consequences for Leishmania

Nicolas Collin; Regis Gomes; Clarissa Teixeira; Lily I. Cheng; Andre Laughinghouse; Jerrold M. Ward; Dia-Eldin Elnaiem; Laurent Fischer; Jesus G. Valenzuela; Shaden Kamhawi

Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.


BMC Genomics | 2008

The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies

Ryan C. Jochim; Clarissa Teixeira; Andre Laughinghouse; Jianbing Mu; Fabiano Oliveira; Regis Gomes; Dia-Eldin Elnaiem; Jesus G. Valenzuela

BackgroundIn the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of the sand fly are poorly understood. In the present work we sequenced five cDNA libraries constructed from midgut tissue from the sand fly Lutzomyia longipalpis and analyzed the transcripts present following sugar feeding, blood feeding and after the blood meal has been processed and excreted, both in the presence and absence of Leishmania infantum chagasi.ResultsComparative analysis of the transcripts from sugar-fed and blood-fed cDNA libraries resulted in the identification of transcripts differentially expressed during blood feeding. This included upregulated transcripts such as four distinct microvillar-like proteins (LuloMVP1, 2, 4 and 5), two peritrophin like proteins, a trypsin like protein (Lltryp1), two chymotrypsin like proteins (LuloChym1A and 2) and an unknown protein. Downregulated transcripts by blood feeding were a microvillar-like protein (LuloMVP3), a trypsin like protein (Lltryp2) and an astacin-like metalloprotease (LuloAstacin). Furthermore, a comparative analysis between blood-fed and Leishmania infected midgut cDNA libraries resulted in the identification of the transcripts that were differentially expressed due to the presence of Leishmania in the gut of the sand fly. This included down regulated transcripts such as four microvillar-like proteins (LuloMVP1,2, 4 and 5), a Chymotrypsin (LuloChym1A) and a carboxypeptidase (LuloCpepA1), among others. Upregulated midgut transcripts in the presence of Leishmania were a peritrophin like protein (LuloPer1), a trypsin-like protein (Lltryp2) and an unknown protein.ConclusionThis transcriptome analysis represents the largest set of sequence data reported from a specific sand fly tissue and provides further information of the transcripts present in the sand fly Lutzomyia longipalpis. This analysis provides the detailed information of molecules present in the midgut of this sand fly and the transcripts potentially modulated by blood feeding and by the presence of the Leishmania parasite. More importantly, this analysis suggests that Leishmania infantum chagasi alters the expression profile of certain midgut transcripts in the sand fly during blood meal digestion and that this modulation may be relevant for the survival and establishment of the parasite in the gut of the fly. Moreover, this analysis suggests that these changes may be occurring during the digestion of the blood meal and not afterwards.


PLOS Neglected Tropical Diseases | 2010

Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America.

Clarissa Teixeira; Regis Gomes; Nicolas Collin; David Reynoso; Ryan C. Jochim; Fabiano Oliveira; Amy E. Seitz; Dia-Eldin Elnaiem; Arlene de Jesus Mendes Caldas; Ana Paula Souza; Cláudia Brodskyn; Ivete Lopes de Mendonça; Carlos Henrique Nery Costa; Petr Volf; Aldina Barral; Shaden Kamhawi; Jesus G. Valenzuela

Background Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. Methodology/Principal Findings We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Conclusions/Significance Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.


The Journal of Infectious Diseases | 2000

Competence of the human host as a reservoir for Leishmania chagasi.

Carlos Henrique Nery Costa; Regis Gomes; Mauro Roberto Biá da Silva; Lourdes Maria Garcez; Pk Ramos; Regina S. Santos; Jeffrey J. Shaw; John R. David; James H. Maguire

The failure of control programs for visceral leishmaniasis (VL) that depend on elimination of infected dogs suggests that other reservoir hosts may participate in the transmission cycle. To determine whether persons infected with Leishmania chagasi can infect the vector sand fly, laboratory-reared Lutzomyia longipalpis were allowed to feed on Brazilian subjects with active, cured, and asymptomatic VL and on asymptomatic residents of houses of persons with active VL. Of 3747 insects that had fed, 26 acquired infection from 11 of the 44 persons with active VL, but none acquired infection from the 137 asymptomatic persons. Among persons <4 years old with active VL, a history of diarrhea and higher peripheral blood neutrophil counts were independent predictors of infectivity. Further experiments using larger numbers of insects are necessary to evaluate the reservoir competence of persons with asymptomatic infections, who represent a large segment of the population of several Brazilian cities.


Journal of Biological Chemistry | 2011

Structure and function of a "yellow" protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection.

X. Xu; Fabiano Oliveira; B.W. Chang; Nicolas Collin; Regis Gomes; Clarissa Teixeira; David Reynoso; V. My Pham; D.E. Elnaiem; Shaden Kamhawi; José M. C. Ribeiro; Jesus G. Valenzuela; J.F. Andersen

LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect “yellow” family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.


Journal of Immunology | 2005

Saliva from Lutzomyia longipalpis Induces CC Chemokine Ligand 2/Monocyte Chemoattractant Protein-1 Expression and Macrophage Recruitment

Clarissa Teixeira; Maria Jania Teixeira; Regis Gomes; Claire da Silva Santos; Bruno B. Andrade; Imbroinise Raffaele-Netto; João Santana da Silva; Angelo Guglielmotti; José Carlos Miranda; Aldina Barral; Cláudia Brodskyn; Manoel Barral-Netto

Saliva of bloodfeeding arthropods has been incriminated in facilitating the establishment of parasite in their host. We report on the leukocyte chemoattractive effect of salivary gland homogenate (SGH) from Lutzomyia longipalpis on saliva-induced inflammation in an air pouch model. SGH (0.5 pair/animal) was inoculated in the air pouch formed in the back of BALB/c or C57BL/6 mice. L. longipalpis SGH induced a significant influx of macrophages in BALB/c but not in C57BL/6 mice. SGH-induced cell recruitment reached a peak at 12 h after inoculation and was higher than that induced by the LPS control. This differential cell recruitment in BALB/c mice was directly correlated to an increase in CCL2/MCP-1 expression in the air pouch lining tissue. In fact, treatment with bindarit, an inhibitor of CCL2/MCP-1 synthesis, and also with a specific anti-MCP-1 mAb resulted in drastic reduction of macrophage recruitment and inhibition of CCL2/MCP-1 expression in the lining tissue. CCL2/MCP-1 production was also seen in vitro when J774 murine macrophages were exposed to L. longipalpis SGH. The SGH effect was abrogated by preincubation with serum containing anti-SGH IgG Abs as well as in mice previously sensitized with L. longipalpis bites. Interestingly, the combination of SGH with Leishmania chagasi induced an increased recruitment of neutrophils and macrophages when compared with L. chagasi alone. Taken together these results suggest that SGH not only induces the recruitment of a greater number of macrophages by enhancing CCL2/MCP-1 production but also synergizes with L. chagasi to recruit more inflammatory cells to the site of inoculation.


Frontiers in Immunology | 2012

The Immune Response to Sand Fly Salivary Proteins and Its Influence on Leishmania Immunity

Regis Gomes; Fabiano Oliveira

Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic. Immunization with a single salivary protein or exposure to uninfected bites was shown to result in a protective immune response against leishmaniasis. Antibodies to saliva were not required for this protection. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review the immunity to sand fly salivary proteins in the context of its vector–parasite–host combinations and their vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

Collaboration


Dive into the Regis Gomes's collaboration.

Top Co-Authors

Avatar

Clarissa Teixeira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jesus G. Valenzuela

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabiano Oliveira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shaden Kamhawi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Meneses

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dia-Eldin Elnaiem

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge