Rehan Kapadia
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rehan Kapadia.
Nano Letters | 2014
Steven Chuang; Corsin Battaglia; Angelica Azcatl; Stephen McDonnell; Jeong Seuk Kang; Xingtian Yin; Mahmut Tosun; Rehan Kapadia; Hui Fang; Robert M. Wallace; Ali Javey
The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band of MoS2, thus resulting in large Schottky barrier heights for holes with limited hole injection from the contacts. Here, we show that substoichiometric molybdenum trioxide (MoOx, x < 3), a high work function material, acts as an efficient hole injection layer to MoS2 and WSe2. In particular, we demonstrate MoS2 p-type field-effect transistors and diodes by using MoOx contacts. We also show drastic on-current improvement for p-type WSe2 FETs with MoOx contacts over devices made with Pd contacts, which is the prototypical metal used for hole injection. The work presents an important advance in contact engineering of TMDCs and will enable future exploration of their performance limits and intrinsic transport properties.
Nano Letters | 2010
Zhiyong Fan; Rehan Kapadia; Paul W. Leu; Xiaobo Zhang; Yu-Lun Chueh; Kuniharu Takei; Kyoungsik Yu; Arash Jamshidi; Asghar A. Rathore; Daniel J. Ruebusch; Ming C. Wu; Ali Javey
Optical properties of highly ordered Ge nanopillar arrays are tuned through shape and geometry control to achieve the optimal absorption efficiency. Increasing the Ge materials filling ratio is shown to increase the reflectance while simultaneously decreasing the transmittance, with the absorbance showing a strong diameter dependency. To enhance the broad band optical absorption efficiency, a novel dual-diameter nanopillar structure is presented, with a small diameter tip for minimal reflectance and a large diameter base for maximal effective absorption coefficient. The enabled single-crystalline absorber material with a thickness of only 2 μm exhibits an impressive absorbance of ∼99% over wavelengths, λ = 300-900 nm. These results enable a viable and convenient route toward shape-controlled nanopillar-based high-performance photonic devices.
Nano Letters | 2014
Sujay B. Desai; Gyungseon Seol; Jeong Seuk Kang; Hui Fang; Corsin Battaglia; Rehan Kapadia; Joel W. Ager; Jing Guo; Ali Javey
Transition metal dichalcogenides, such as MoS2 and WSe2, have recently gained tremendous interest for electronic and optoelectronic applications. MoS2 and WSe2 monolayers are direct bandgap and show bright photoluminescence (PL), whereas multilayers exhibit much weaker PL due to their indirect optical bandgap. This presents an obstacle for a number of device applications involving light harvesting or detection where thicker films with direct optical bandgap are desired. Here, we experimentally demonstrate a drastic enhancement in PL intensity for multilayer WSe2 (2-4 layers) under uniaxial tensile strain of up to 2%. Specifically, the PL intensity of bilayer WSe2 is amplified by ∼ 35× , making it comparable to that of an unstrained WSe2 monolayer. This drastic PL enhancement is attributed to an indirect to direct bandgap transition for strained bilayer WSe2, as confirmed by density functional theory (DFT) calculations. Notably, in contrast to MoS2 multilayers, the energy difference between the direct and indirect bandgaps of WSe2 multilayers is small, thus allowing for bandgap crossover at experimentally feasible strain values. Our results present an important advance toward controlling the band structure and optoelectronic properties of few-layer WSe2 via strain engineering, with important implications for practical device applications.
Angewandte Chemie | 2012
Min Hyung Lee; Kuniharu Takei; Junjun Zhang; Rehan Kapadia; Maxwell Zheng; Yu-Ze Chen; Junghyo Nah; Tyler S. Matthews; Yu-Lun Chueh; Joel W. Ager; Ali Javey
Water splitting by using sunlight for the production of hydrogen yields a storable product, which can be used as a fuel. There is considerable research into H2 generation, namely the reduction of protons to H2 in aqueous solution using semiconductor photocathodes. To maximize the photoelectrochemical (PEC) performance, the selection of the active materials and device configurations should be carefully considered. First, the short-circuit current density (Jsc) should be maximized by choosing materials with high optical absorption coefficients and low carrier recombination rates, both in the bulk and at the surface. The reflectance should be minimized by using surface nanotexturing to further improve light absorption. The onset potential (Eos) of the PEC device versus the reversible H /H2 redox potential should be maximized. Finally, the surface energy needs to be controlled to minimize the accumulation of gas bubbles on the surface of the photoelectrode. Light absorbers with band gaps in the range of 1.1–1.7 eV provide both a good match to the terrestrial solar spectrum and a significant fraction of the 1.23 eV free energy required to split water. Overpotentials associated with the electron transfer to (solvated) protons in aqueous solution should be minimized by improving carrier transport from semiconductor to electrolyte by decorating the semiconductor with cocatalysts, tuning band edges, and decreasing contact resistance. p-Type Si has been extensively investigated as a photocathode for photochemical hydrogen production. Planar Si has relatively low short-circuit current densities under AM1.5 G illumination, approximately 10 mAcm 2 (reference [9]), compared to what can be achieved in a pn junction solar cell (> 35 mAcm ). Nanostructuring and incorporation of cocatalysts have been used to raise the short-circuit current density to over 30 mAcm . A recent study using np Si radial junction microwires reported an Eos value of 0.54 V and an Jsc value of 15 mA, leading to an overall efficiency near 6%. The onset potential observed to date for p-Si photocathodes is less than half of the value required for overall water splitting (1.23 V). This low onset potential limits the performance of tandem or “Z-scheme” approaches, which would function without external bias, as it limits the potential overlap required for spontaneous water splitting. An ideal photocathode for use in a solar-driven hydrogen production system without bias should have both a high current density and a favorable open-circuit potential versus the reversible H/H2 redox couple. Herein, we employ nanotextured p-InP photocathodes in conjunction with a TiO2 passivation layer and a Ru cocatalyst to increase both Jsc and Eos values under H2 evolution conditions. InP has a number of attractive attributes as a photocathode: 1) Its band gap of 1.3 eV is well-matched to the solar spectrum; InP-based solar cells have achieved AM1.5 G efficiencies of up to 22%. 2) The conduction band edge of InP is slightly above the water reduction potential, thus electron transfer is favorable in this system. 3) The surface-recombination velocity of untreated InP is low (ca. 10 cms 1 for n-type and 10 cms 1 for p-type), which is particularly important for nonplanar devices with high surface areas, such as those explored in this study. For these reasons, InP has been studied previously as a photocathode for both water splitting and CO2 reduction. [18–20] Specifically, Heller and Vadimsky reported attractive PEC performances with current densities up to 28 mAcm 2 and conversion efficiencies of approximately 12% in InP photocathodes. Motivated by these results, we use InP as a model material system to elucidate the role of surface nanotexturing on the PEC device performance. We find that nanotextured InP photocathodes exhibit drastically enhanced performances compared to our planar cells that were processed using identical conditions. We examine the various effects of nanotexturing [*] M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, J. Nah, J. W. Ager, Prof. A. Javey Material Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720 (USA) E-mail: [email protected] [email protected] M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, J. Nah, Prof. A. Javey Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720 (USA) M. H. Lee, T. S. Matthews, J. W. Ager, Prof. A. Javey Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Nano Letters | 2013
Steven Chuang; Qun Gao; Rehan Kapadia; Alexandra C. Ford; Jing Guo; Ali Javey
Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as ~150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theoretically assessed by a method that combines Fermis golden rule and a numerical Schrödinger-Poisson simulation to determine the surface scattering potential with the theoretical calculations being consistent with experiments. Near ballistic transport (~80% of the ballistic limit) is demonstrated experimentally for transistors with a channel length of ~60 nm, owing to the long mean free path of electrons in InAs NWs.
Applied Physics Letters | 2010
Rehan Kapadia; Zhiyong Fan; Ali Javey
The performance dependence of a CdS/CdTe nanopillar solar cell on various device and materials parameters is explored while examining its performance limits through detailed device modeling. The optimized cell enables efficiencies >∼20% with minimal short circuit current dependence on bulk minority carrier diffusion length, demonstrating the efficient collection of photogenerated carriers, therefore, lowering the materials quality and purity constraints. Given the large p-n junction interface area, the interface recombination velocity is shown to have detrimental effect on the device performance of nanopillar solar cells. In that regard, the CdS/CdTe material system is optimal due to its low interface recombination velocity.
Nano Letters | 2010
Yu-Lun Chueh; Zhiyong Fan; Kuniharu Takei; Hyunhyub Ko; Rehan Kapadia; Asghar A. Rathore; Nate Miller; Kyoungsik Yu; Ming C. Wu; Eugene E. Haller; Ali Javey
Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips ( approximately 4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence ( approximately 75 degrees ) and for relatively short nanoneedle lengths ( approximately 1 mum). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of approximately 1 eV. The reported black Ge could potentially have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.
Nano Letters | 2012
Kuniharu Takei; Morten Madsen; Hui Fang; Rehan Kapadia; Steven Chuang; Ha Sul Kim; Chin-Hung Liu; E. Plis; Junghyo Nah; Sanjay Krishna; Yu-Lun Chueh; Jing Guo; Ali Javey
As of yet, III-V p-type field-effect transistors (p-FETs) on Si have not been reported, due partly to materials and processing challenges, presenting an important bottleneck in the development of complementary III-V electronics. Here, we report the first high-mobility III-V p-FET on Si, enabled by the epitaxial layer transfer of InGaSb heterostructures with nanoscale thicknesses. Importantly, the use of ultrathin (thickness, ~2.5 nm) InAs cladding layers results in drastic performance enhancements arising from (i) surface passivation of the InGaSb channel, (ii) mobility enhancement due to the confinement of holes in InGaSb, and (iii) low-resistance, dopant-free contacts due to the type III band alignment of the heterojunction. The fabricated p-FETs display a peak effective mobility of ~820 cm(2)/(V s) for holes with a subthreshold swing of ~130 mV/decade. The results present an important advance in the field of III-V electronics.
Applied Physics Letters | 2013
Steven Chuang; Rehan Kapadia; Hui Fang; Ting Chia Chang; Wen-Chun Yen; Yu-Lun Chueh; Ali Javey
Here, we present the fabrication and electrical analysis of InAs/WSe2 van der Waals heterojunction diodes formed by the transfer of ultrathin membranes of one material upon another. Notably, InAs and WSe2 are two materials with completely different crystal structures, which heterojunction is inconceivable with traditional epitaxial growth techniques. Clear rectification from the n-InAs/p-WSe2 junction (forward/reverse current ratio >106) is observed. A low reverse bias current <10−12A/μm2 and ideality factor of ∼1.1 were achieved, suggesting near-ideal electrically active interfaces.
Small | 2010
Hyunhyub Ko; Zhenxing Zhang; Johnny C. Ho; Kuniharu Takei; Rehan Kapadia; Yu-Lun Chueh; Weizhen Cao; Brett A. Cruden; Ali Javey
The ability of gecko lizards and many insects to climb vertical surfaces relies on the hierarchical micro- and nanofibrillar arrayed features on their feet. [1‐3] The fibrillar structures provide conformal contact with the opposing surfaces to maximize the van der Waals (vdW) interactions. [4] These adhesive systems found in nature have inspired researchers to design synthetic adhesives by using fibrillar arrays of polymers andcarbonnanotubes(CNTs),whichcanuniversallyattachtoa variety of surfaces. [5‐10] In addition to these universal adhesives, the fibrillar arrays have also been utilized to design self-selective connectors to bind morphologically self-similar components together. Specifically, we recently reported selfselective connectors based on inorganic/organic nanowire (NW) arrays, in which the vdW interactions are significantly amplified by the interpenetration of the high-aspect-ratio NW components. [11‐13] In contrast to gecko adhesives, the unisex NW connectors feature self-selective binding with weak adhesiontonon-self-similarsurfacesarisingfromtherelatively stiff structure ofthe hybrid NWs. While thepotency ofthe NW connectors has been shown, previous studies have relied on hard and fragile backing layers, such as silicon substrates used for the growth of the inorganic NWs, which is not practical for applications requiring lightweight, robust, and bendable backing layers. Herein, we introduce bendable carbon nanofiber (CNF) connectors with mechanically flexible backing and excellent self-selective adhesion properties. CNFs are similar to multiwalled (MW) CNTs but are distinguished by their stacked graphitic, conelike structures, and are often tapered. [14] This structure allows individual CNFs to be free-standing and more effective as interpenetrating connectors than similarly grown CNT forests, which suffer from significant entanglement. The flexible CNF connectors are enabled by the direct transfer of vertical CNF arrays (i.e., CNF forests) grown on silicon substrates to plastic substrates. The vertical geometry of the CNF arrays provides strong shear adhesion strength due to the efficient interpenetration of the CNFs with minimal engagement and disengagement forces. Furthermore, by controlling the tilt angle of the CNF arrays, directional shear adhesion properties are enabled.