Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rei-Lin Kuo is active.

Publication


Featured researches published by Rei-Lin Kuo.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structural basis for suppression of a host antiviral response by influenza A virus

Kalyan Das; Li-Chung Ma; Rong Xiao; Brian Radvansky; James M. Aramini; Li Zhao; Jesper Marklund; Rei-Lin Kuo; Karen Y. Twu; Eddy Arnold; Robert M. Krug; Gaetano T. Montelione

Influenza A viruses are responsible for seasonal epidemics and high mortality pandemics. A major function of the viral NS1A protein, a virulence factor, is the inhibition of the production of IFN-β mRNA and other antiviral mRNAs. The NS1A protein of the human influenza A/Udorn/72 (Ud) virus inhibits the production of these antiviral mRNAs by binding the cellular 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), which is required for the 3′ end processing of all cellular pre-mRNAs. Here we report the 1.95-Å resolution X-ray crystal structure of the complex formed between the second and third zinc finger domain (F2F3) of CPSF30 and the C-terminal domain of the Ud NS1A protein. The complex is a tetramer, in which each of two F2F3 molecules wraps around two NS1A effector domains that interact with each other head-to-head. This structure identifies a CPSF30 binding pocket on NS1A comprised of amino acid residues that are highly conserved among human influenza A viruses. Single amino acid changes within this binding pocket eliminate CPSF30 binding, and a recombinant Ud virus expressing an NS1A protein with such a substitution is attenuated and does not inhibit IFN-β pre-mRNA processing. This binding pocket is a potential target for antiviral drug development. The crystal structure also reveals that two amino acids outside of this pocket, F103 and M106, which are highly conserved (>99%) among influenza A viruses isolated from humans, participate in key hydrophobic interactions with F2F3 that stabilize the complex.


Journal of Virology | 2006

The CPSF30 Binding Site on the NS1A Protein of Influenza A Virus Is a Potential Antiviral Target

Karen Y. Twu; Diana L. Noah; Ping Rao; Rei-Lin Kuo; Robert M. Krug

ABSTRACT The emergence of influenza A viruses resistant to the two existing classes of antiviral drugs highlights the need for additional antiviral drugs, particularly considering the potential threat of a pandemic of H5N1 influenza A viruses. Here, we determine whether influenza A virus replication can be selectively inhibited by blocking the ability of its NS1A protein to inhibit the 3′-end processing of cellular pre-mRNAs, including beta interferon (IFN-β) pre-mRNA. Pre-mRNA processing is inhibited via the binding of the NS1A protein to the cellular CPSF30 protein, and mutational inactivation of this NS1A binding site causes severe attenuation of the virus. We demonstrate that binding of CPSF30 is mediated by two of its zinc fingers, F2F3, and that the CPSF30/F2F3 binding site on the NS1A protein extends from amino acid 144 to amino acid 186. We generated MDCK cells that constitutively express epitope-tagged F2F3 in the nucleus, although at only approximately one-eighth the level of the NS1A protein produced during virus infection. Influenza A virus replication was inhibited in this cell line, whereas no inhibition was observed with influenza B virus, whose NS1B protein lacks a binding site for CPSF30. Influenza A virus, but not influenza B virus, induced increased production of IFN-β mRNA in the F2F3-expressing cells. These results, which indicate that F2F3 inhibits influenza A virus replication by blocking the binding of endogenous CPSF30 to the NS1A protein, point to this NS1A binding site as a potential target for the development of antivirals directed against influenza A virus.


Proceedings of the National Academy of Sciences of the United States of America | 2010

ISG15 conjugation system targets the viral NS1 protein in influenza A virus–infected cells

Chen Zhao; Tien Ying Hsiang; Rei-Lin Kuo; Robert M. Krug

ISG15 is an IFN-α/β–induced, ubiquitin-like protein that is conjugated to a wide array of cellular proteins through the sequential action of three conjugation enzymes that are also induced by IFN-α/β. Recent studies showed that ISG15 and/or its conjugates play an important role in protecting cells from infection by several viruses, including influenza A virus. However, the mechanism by which ISG15 modification exerts antiviral activity has not been established. Here we extend the repertoire of ISG15 targets to a viral protein by demonstrating that the NS1 protein of influenza A virus (NS1A protein), an essential, multifunctional protein, is ISG15 modified in virus-infected cells. We demonstrate that the major ISG15 acceptor site in the NS1A protein in infected cells is a critical lysine residue (K41) in the N-terminal RNA-binding domain (RBD). ISG15 modification of K41 disrupts the association of the NS1A RBD domain with importin-α, the protein that mediates nuclear import of the NS1A protein, whereas the RBD retains its double-stranded RNA-binding activity. Most significantly, we show that ISG15 modification of K41 inhibits influenza A virus replication and thus contributes to the antiviral action of IFN-β. We also show that the NS1A protein directly and specifically binds to Herc5, the major E3 ligase for ISG15 conjugation in human cells. These results establish a “loss of function” mechanism for the antiviral activity of the IFN-induced ISG15 conjugation system, namely, that it inhibits viral replication by conjugating ISG15 to a specific viral protein, thereby inhibiting its function.


Journal of Virology | 2007

The H5N1 Influenza Virus NS Genes Selected after 1998 Enhance Virus Replication in Mammalian Cells

Karen Y. Twu; Rei-Lin Kuo; Jesper Marklund; Robert M. Krug

ABSTRACT The NS1A proteins of human influenza A viruses bind CPSF30, a cellular factor required for the processing of cellular pre-mRNAs, thereby inhibiting the production of all cellular mRNAs, including beta interferon mRNA. Here we show that the NS1A protein of the pathogenic H5N1 influenza A/Hong Kong/483/97 (HK97) virus isolated from humans has an intrinsic defect in CPSF30 binding. It does not bind CPSF30 in vitro and causes high beta interferon mRNA production and reduced virus replication in MDCK cells when expressed in a recombinant virus in which the other viral proteins are encoded by influenza A/Udorn/72. We traced this defect to the identities of amino acids 103 and 106 in the HK97 NS1A protein, which differ from the consensus amino acids, F and M, respectively, found in the NS1A proteins of almost all human influenza A virus strains. X-ray crystallography has shown that F103 and M106, which are not part of the CPSF30 binding pocket of the NS1A protein, stabilize the NS1A-CPSF30 complex. In contrast to the HK97 NS1A protein, the NS1A proteins of H5N1 viruses isolated from humans after 1998 contain F103 and M106 and hence bind CPSF30 in vitro and do not attenuate virus replication. The HK97 NS1A protein is less attenuating when expressed in a virus that also encodes the other internal HK97 proteins and under these conditions binds to CPSF30 to a substantial extent in vivo. Consequently, these internal HK97 proteins largely compensate for the absence of F103 and M106, presumably by stabilizing the NS1A-CPSF30 complex.


Journal of General Virology | 2002

Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death.

Rei-Lin Kuo; Szu-Hao Kung; Yueh-Ying Hsu; Wu-Tse Liu

Enterovirus 71 (EV71) is the causative agent of human diseases with distinct severity, from mild hand-foot-and-mouth disease to severe neurological syndromes, such as encephalitis and meningitis. Infection of several different cell lines with EV71 causes extensive cytopathic effect, leading to destruction of the entire monolayer and the death of infected cells. In this study, cell death processes during EV71 infection and the underlying mechanisms of them were investigated. The hallmarks of apoptosis, nuclear condensation and fragmentation, were observed 24 h after infection. Apoptosis in infected cells was also confirmed by detectable cleavage of cellular DNA and degradation of poly(ADP-ribose) polymerase. Transient expression of EV71 2A protease (2A(pro)) alone resulted in the induction of apoptotic change. Infection of EV71 or expression of EV71 2A(pro) leads to cleavage of the eukaryotic initiation factor 4GI, a key factor for host protein synthesis. This study added one more example to the growing list of human viruses that induce apoptosis by a virus-encoded protein.


Journal of Virology | 2009

Influenza A Virus Polymerase Is an Integral Component of the CPSF30-NS1A Protein Complex in Infected Cells

Rei-Lin Kuo; Robert M. Krug

ABSTRACT The NS1A protein of influenza A virus binds the cellular CPSF30 protein, thereby inhibiting the 3′-end processing of all cellular pre-mRNAs, including beta interferon pre-mRNA. X-ray crystallography identified the CPSF30-binding pocket on the influenza virus A/Udorn/72 (Ud) NS1A protein and the critical role of two hydrophobic NS1A amino acids outside the pocket, F103 and M106, in stabilizing the CPSF30-NS1A complex. Although the NS1A protein of the 1997 H5N1 influenza A/Hong Kong/483/97 (HK97) virus contains L (not F) at position 103 and I (not M) at position 106, it binds CPSF30 in vivo to a significant extent because cognate (HK97) internal proteins stabilize the CPSF30-NS1A complex in infected cells. Here we show that the cognate HK97 polymerase complex, containing the viral polymerase proteins (PB1, PB2, and PA) and the nucleocapsid protein (NP), is responsible for this stabilization. The noncognate Ud polymerase complex cannot carry out this stabilization, but it can stabilize CPSF30 binding to a mutated (F103L M106I) cognate Ud NS1A protein. These results suggested that the viral polymerase complex is an integral component of the CPSF30-NS1A protein complex in infected cells even when the cognate NS1A protein contains F103 and M106, and we show that this is indeed the case. Finally, we show that cognate PA protein and NP, but not cognate PB1 and PB2 proteins, are required for stabilizing the CPSF30-NS1A complex, indicating that the NS1A protein interacts primarily with its cognate PA protein and NP in a complex that includes the cellular CPSF30 protein.


Journal of Virology | 2009

Interaction of the Influenza A Virus Nucleocapsid Protein with the Viral RNA Polymerase Potentiates Unprimed Viral RNA Replication

Laura L. Newcomb; Rei-Lin Kuo; Qiaozhen Ye; Yunyun Jiang; Yizhi Jane Tao; Robert M. Krug

ABSTRACT The influenza A virus polymerase transcribes and replicates the eight virion RNA (vRNA) segments. Transcription is initiated with capped RNA primers excised from cellular pre-mRNAs by the intrinsic endonuclease of the viral polymerase. Viral RNA replication occurs in two steps: first a full-length copy of vRNA is made, termed cRNA, and then this cRNA is copied to produce vRNA. The synthesis of cRNAs and vRNAs is initiated without a primer, in contrast to the initiation of viral mRNA synthesis, and requires the viral nucleocapsid protein (NP). The mechanism of unprimed viral RNA replication is poorly understood. To elucidate this mechanism, we used purified recombinant influenza virus polymerase complexes and NP to establish an in vitro system that catalyzes the unprimed synthesis of cRNA and vRNA using 50-nucleotide-long RNA templates. The purified viral polymerase and NP are sufficient for catalyzing this RNA synthesis without a primer, suggesting that host cell factors are not required. We used this purified in vitro replication system to demonstrate that the RNA-binding activity of NP is not required for the unprimed synthesis of cRNA and vRNA. This result rules out two models that postulate that the RNA-binding activity of NP mediates the switch from capped RNA-primed transcription to unprimed viral RNA replication. Because we showed that NP lacking RNA-binding activity binds directly to the viral polymerase, it is likely that a direct interaction between NP and the viral polymerase results in a modification of the polymerase in favor of unprimed initiation.


Virology | 2010

Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription.

Rei-Lin Kuo; Chen Zhao; Meghana Malur; Robert M. Krug

We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation.


Virology Journal | 2013

Strategies to develop antivirals against enterovirus 71

Rei-Lin Kuo; Shin-Ru Shih

Enterovirus 71 (EV71) is an important human pathogen which may cause severe neurological complications and death in children. The virus caused several outbreaks in the Asia-Pacific region during the past two decades and has been considered a significant public health problem in the post-poliovirus eradication era. Unlike poliovirus, there is no effective vaccine or approved antivirals against EV71. To explore anti-EV71 agents therefore is of vital importance. Several strategies have been employed to develop antivirals based on the molecular characteristics of the virus. Among these, some small molecules that were developed against human rhinoviruses and poliovirus are under evaluation. In this review, we discuss the recent development of such small molecules against EV71, known drug resistance and possible solutions to it, and animal models for evaluating the efficacy of these antivirals. Although further investigation is required for clinical applications of the existing candidates, the molecular mechanisms revealed for the inhibition of EV71 replication can be used for designing new molecules against this virus in the future.


Mbio | 2012

Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein

Qiaozhen Ye; Tom S.Y. Guu; Douglas A. Mata; Rei-Lin Kuo; Bartram L Smith; Robert M. Krug; Yizhi Jane Tao

ABSTRACT Influenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza viral RNPs, which serve as the templates for viral RNA synthesis in the nuclei of infected cells, are not linear but rather are organized in hairpin-like double-helical structures. Here we present results that strongly support a coherent model for the assembly of the double-helical influenza virus RNP structure. First, we show that NP self-associates much more weakly in the absence of RNA than in its presence, indicating that oligomerization is very limited in the cytoplasm. We also show that once NP has oligomerized, it can dissociate in the absence of bound RNA, but only at a very slow rate, indicating that the NP scaffold remains intact when viral RNA dissociates from NPs to interact with the polymerase during viral RNA synthesis. In addition, we identify a previously unknown NP-NP interface that is likely responsible for organizing the double-helical viral RNP structure. This identification stemmed from our observation that NP lacking the oligomerization tail loop forms monomers and dimers. We determined the crystal structure of this NP dimer, which reveals this new NP-NP interface. Mutation of residues that disrupt this dimer interface does not affect oligomerization of NPs containing the tail loop but does inactivate the ability of NPs containing the tail loop to support viral RNA synthesis in minigenome assays. IMPORTANCE Influenza A virus, the causative agent of human pandemics and annual epidemics, contains eight RNA gene segments. Each RNA segment assumes the form of a rod-shaped, double-helical ribonucleoprotein (RNP) that contains multiple copies of a viral protein, the nucleoprotein (NP), which coats the RNA segment along its entire length. Previous studies showed that NP molecules can polymerize via a structural element called the tail loop, but the RNP assembly process is poorly understood. Here we show that influenza virus RNPs are likely assembled from NP monomers, which polymerize through the tail loop only in the presence of viral RNA. Using X-ray crystallography, we identified an additional way that NP molecules interact with each other. We hypothesize that this new interaction is responsible for organizing linear, single-stranded influenza virus RNPs into double-helical structures. Our results thus provide a coherent model for the assembly of the double-helical influenza virus RNP structure. Influenza A virus, the causative agent of human pandemics and annual epidemics, contains eight RNA gene segments. Each RNA segment assumes the form of a rod-shaped, double-helical ribonucleoprotein (RNP) that contains multiple copies of a viral protein, the nucleoprotein (NP), which coats the RNA segment along its entire length. Previous studies showed that NP molecules can polymerize via a structural element called the tail loop, but the RNP assembly process is poorly understood. Here we show that influenza virus RNPs are likely assembled from NP monomers, which polymerize through the tail loop only in the presence of viral RNA. Using X-ray crystallography, we identified an additional way that NP molecules interact with each other. We hypothesize that this new interaction is responsible for organizing linear, single-stranded influenza virus RNPs into double-helical structures. Our results thus provide a coherent model for the assembly of the double-helical influenza virus RNP structure.

Collaboration


Dive into the Rei-Lin Kuo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Krug

University of Texas System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Y. Twu

University of Texas System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge