Reid R. Harrison
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reid R. Harrison.
IEEE Journal of Solid-state Circuits | 2003
Reid R. Harrison; Cameron T. Charles
There is a need among scientists and clinicians for low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface. The advent of fully implantable multielectrode arrays has created the need for fully integrated micropower amplifiers. We designed and tested a novel bioamplifier that uses a MOS-bipolar pseudoresistor element to amplify low-frequency signals down to the millihertz range while rejecting large dc offsets. We derive the theoretical noise-power tradeoff limit - the noise efficiency factor - for this amplifier and demonstrate that our VLSI implementation approaches this limit by selectively operating MOS transistors in either weak or strong inversion. The resulting amplifier, built in a standard 1.5-/spl mu/m CMOS process, passes signals from 0.025Hz to 7.2 kHz with an input-referred noise of 2.2 /spl mu/Vrms and a power dissipation of 80 /spl mu/W while consuming 0.16 mm/sup 2/ of chip area. Our design technique was also used to develop an electroencephalogram amplifier having a bandwidth of 30 Hz and a power dissipation of 0.9 /spl mu/W while maintaining a similar noise-power tradeoff.
international symposium on circuits and systems | 2002
Reid R. Harrison
There is a need among scientists and clinicians for low-noise, low-power biosignal amplifiers capable of amplifying signals in the mHz to kHz range while rejecting large dc offsets generated at the electrode-tissue interface. The advent of fully-implantable multielectrode arrays has created the need for fully-integrated micropower amplifiers. We designed and tested a novel bioamplifier that uses a MOS-bipolar pseudo-resistor to amplify signals down to the mHz range while rejecting large dc offsets. We derive the theoretical noise-power tradeoff limit - the noise efficiency factor - for this amplifier and demonstrate that our VLSI implementation approaches that limit. The resulting amplifier, built in a standard 1.5/spl mu/m CMOS process, passes signals from 0.1mHz to 7.2kHz with an input-referred noise of 2.2/spl mu/Vrms and a power dissipation of 80/spl mu/W while consuming 0.16mm/sup 2/ of chip area.
Proceedings of the IEEE | 2008
Reid R. Harrison
The ability to monitor the simultaneous electrical activity of multiple neurons in the brain enables a wide range of scientific and clinical endeavors. Recent efforts to merge miniature multielectrode neural recording arrays with integrated electronics have revealed significant circuit design challenges. Weak neural signals must be amplified and filtered using low-noise circuits placed close to the electrodes themselves, but power dissipation must strictly be limited to prevent tissue damage due to local heating. In modern recording systems with 100 or more electrodes, raw data rates of 15 Mb/s or more are easily produced. Micropower wireless telemetry circuits cannot transmit information at such high rates, so data reduction must be performed in the implanted device. In this paper, we present integrated circuits and design techniques that address the twin problems of neural signal amplification and data reduction for this severely size- and power-limited application.
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2009
Reid R. Harrison; Ryan J. Kier; Cynthia A. Chestek; Vikash Gilja; Paul Nuyujukian; Stephen I. Ryu; Bradley Greger; Florian Solzbacher; Krishna V. Shenoy
We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.
intelligent robots and systems | 1995
Larry H. Matthies; Erann Gat; Reid R. Harrison; Brian H. Wilcox; Richard Volpe; Todd Litwin
In 1996, NASA will launch the Mars Pathfinder spacecraft, which will carry an 11 kg rover to explore the immediate vicinity of the lander. To assess the capabilities of the rover, as well as to set priorities for future rover research, it is essential to evaluate the performance of its autonomous navigation system as a function of terrain characteristics. Unfortunately, very little of this kind of evaluation has been done, for either planetary rovers or terrestrial applications. To fill this gap, we have constructed a new microrover testbed consisting of the Rocky 3.2 vehicle and an indoor test arena with overhead cameras for automatic, real-time tracking of the true rover position and heading. We create Mars analog terrains in this arena by randomly distributing rocks according to an exponential model of Mars rock size frequency created from Viking lander imagery. To date, we have recorded detailed logs from over 85 navigation trials in this testbed. In this paper, we outline current plans for Mars exploration over the next decade, summarize the design of the lander and rover for the 1996 Pathfinder mission, and introduce a decomposition of rover navigation into four major functions: goal designation, rover localization, hazard detection, and path selection. We then describe the Pathfinder approach to each function, present results to date of evaluating the performance of each function, and outline our approach to enhancing performance for future missions. The results show key limitations in the quality of rover localization, the speed of hazard detection, and the ability of behavior control algorithms for path selection to negotiate the rock frequencies likely to be encountered on Mars. We believe that the facilities, methodologies, and to some extent the specific performance results presented here will provide valuable examples for efforts to evaluate robotic vehicle performance in other applications.
IEEE Transactions on Biomedical Engineering | 2005
Nathan M. Neihart; Reid R. Harrison
State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-/spl mu/m CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 /spl mu/W; the power consumption of the transmitter is measured to be 465 /spl mu/W when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter.
IEEE Transactions on Circuits and Systems Ii: Analog and Digital Signal Processing | 2001
Reid R. Harrison; Julian A. Bragg; Paul E. Hasler; Bradley A. Minch; Stephen P. DeWeerth
The complexity of analog VLSI systems is often limited by the number of pins on a chip rather than by the die area. Currently, many analog parameters and biases are stored off-chip. Moving parameter storage on-chip could save pins and allow us to create complex programmable analog systems. In this paper, we present a design for an on-chip nonvolatile analog memory cell that can be configured in addressable arrays and programmed easily. We use floating-gate MOS transistors to store charge, and we use the processes of tunneling and hot-electron injection to program values. We have fabricated two versions of this design: one with an nFET injection mechanism and one with a pFET injection mechanism. With these designs, we achieve greater than 13-bit output precision with a 39-dB power-supply rejection ratio and no crosstalk between memory cells.
custom integrated circuits conference | 2007
Reid R. Harrison
Electrically active cells in the body produce a wide variety of voltage signals that are useful for medical diagnosis and scientific investigation. These biopotentials span a wide range of amplitudes and frequencies. We have developed a versatile front-end integrated circuit that can be used to amplify many types of bioelectrical signals. The 0.6-mum CMOS chip contains 16 fully-differential amplifiers with gains of 46 dB, 2mu Vrms input-referred noise, and bandwidths programmable from 10 Hz to 10 kHz.
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2009
Cynthia A. Chestek; Vikash Gilja; Paul Nuyujukian; Ryan J. Kier; Florian Solzbacher; Stephen I. Ryu; Reid R. Harrison; Krishna V. Shenoy
Neural prosthetic systems have the potential to restore lost functionality to amputees or patients suffering from neurological injury or disease. Current systems have primarily been designed for immobile patients, such as tetraplegics functioning in a rather static, carefully tailored environment. However, an active patient such as amputee in a normal dynamic, everyday environment may be quite different in terms of the neural control of movement. In order to study motor control in a more unconstrained natural setting, we seek to develop an animal model of freely moving humans. Therefore, we have developed and tested HermesC-INI3, a system for recording and wirelessly transmitting neural data from electrode arrays implanted in rhesus macaques who are freely moving. This system is based on the integrated neural interface (INI3) microchip which amplifies, digitizes, and transmits neural data across a ~ 900 MHz wireless channel. The wireless transmission has a range of ~ 4 m in free space. All together this device consumes 15.8 mA and 63.2 mW. On a single 2 A-hr battery pack, this device runs contiguously for approximately six days. The smaller size and power consumption of the custom IC allows for a smaller package (51 times 38 times 38 mm3) than previous primate systems. The HermesC-INI3 system was used to record and telemeter one channel of broadband neural data at 15.7 kSps from a monkey performing routine daily activities in the home cage.
IEEE Journal of Solid-state Circuits | 2004
Chris Winstead; Jie Dai; Shuhuan Yu; Chris J. Myers; Reid R. Harrison; Christian Schlegel
Design and test results for a fully integrated translinear tail-biting MAP error-control decoder are presented. Decoder designs have been reported for various applications which make use of analog computation, mostly for Viterbi-style decoders. MAP decoders are more complex, and are necessary components of powerful iterative decoding systems such as turbo codes. Analog circuits may require less area and power than digital implementations in high-speed iterative applications. Our (8, 4) Hamming decoder, implemented in an AMI 0.5-/spl mu/m process, is the first functioning CMOS analog MAP decoder. While designed to operate in subthreshold, the decoder also functions above threshold with a small performance penalty. The chip has been tested at bit rates up to 2 Mb/s, and simulations indicate a top speed of about 10 Mb/s in strong inversion. The decoder circuit size is 0.82 mm/sup 2/, and typical power consumption is 1 mW at 1 Mb/s.