Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reijo Salovaara is active.

Publication


Featured researches published by Reijo Salovaara.


Nature | 1998

A serine/threonine kinase gene defective in Peutz-Jeghers syndrome

Akseli Hemminki; David Markie; Ian Tomlinson; Egle Avizienyte; Stina Roth; Anu Loukola; Bignell G; Warren W; Aminoff M; Höglund P; Heikki Järvinen; Paula Kristo; Katarina Pelin; Maaret Ridanpää; Reijo Salovaara; Toro T; Walter F. Bodmer; Olschwang S; Anne S. Olsen; Stratton Mr; de la Chapelle A; Lauri A. Aaltonen

Studies of hereditary cancer syndromes have contributed greatly to our understanding of molecular events involved in tumorigenesis. Here we investigate the molecular background of the Peutz–Jeghers syndrome, (PJS), a rare hereditary disease in which there is predisposition to benign and malignant tumours of many organ systems. A locus for this condition was recently assigned to chromosome 19p (ref. 3). We have identified truncating germline mutations in a gene residing on chromosome 19p in multiple individuals affected by PJS. This previously identified but unmapped gene, LKB1 (ref. 4), has strong homology to a cytoplasmic Xenopus serine/threonine protein kinase XEEK1 (ref. 5), and weaker similarity to many other protein kinases. Peutz–Jeghers syndrome is therefore the first cancer-susceptibility syndrome to be identified that is due to inactivating mutations in a protein kinase.


Nature Genetics | 2002

Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer.

Ian Tomlinson; N. Afrina Alam; Andrew Rowan; Ella Barclay; Emma Jaeger; David P. Kelsell; Irene M. Leigh; Patricia E. Gorman; H. Lamlum; Shamima Rahman; Rebecca Roylance; S. E. Olpin; Stephen Bevan; Karen Barker; N Hearle; Richard S. Houlston; Maija Kiuru; Rainer Lehtonen; Auli Karhu; Susa Vilkki; Päivi Laiho; Carita Eklund; Outi Vierimaa; Kristiina Aittomäki; Marja Hietala; Pertti Sistonen; Anders Paetau; Reijo Salovaara; Riitta Herva; Virpi Launonen

Uterine leiomyomata (fibroids) are common and clinically important tumors, but little is known about their etiology and pathogenesis1,2,3. We previously mapped a gene that predisposes to multiple fibroids, cutaneous leiomyomata and renal cell carcinoma to chromosome 1q42.3–q43 (refs 4–6). Here we show, through a combination of mapping critical recombinants, identifying individuals with germline mutations and screening known and predicted transcripts, that this gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle. Leiomyomatosis-associated mutations are predicted to result in absent or truncated protein, or substitutions or deletions of highly conserved amino acids. Activity of fumarate hydratase is reduced in lymphoblastoid cells from individuals with leiomyomatosis. This enzyme acts as a tumor suppressor in familial leiomyomata, and its measured activity is very low or absent in tumors from individuals with leiomyomatosis. Mutations in FH also occur in the recessive condition fumarate hydratase deficiency7,8,9,10,11, and some parents of people with this condition are susceptible to leiomyomata. Thus, heterozygous and homozygous or compound heterozygous mutants have very different clinical phenotypes. Our results provide clues to the pathogenesis of fibroids and emphasize the importance of mutations of housekeeping and mitochondrial proteins in the pathogenesis of common types of tumor12,13,14.Uterine leiomyomata (fibroids) are common and clinically important tumors, but little is known about their etiology and pathogenesis. We previously mapped a gene that predisposes to multiple fibroids, cutaneous leiomyomata and renal cell carcinoma to chromosome 1q42.3–q43 (refs 4–6). Here we show, through a combination of mapping critical recombinants, identifying individuals with germline mutations and screening known and predicted transcripts, that this gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle. Leiomyomatosis-associated mutations are predicted to result in absent or truncated protein, or substitutions or deletions of highly conserved amino acids. Activity of fumarate hydratase is reduced in lymphoblastoid cells from individuals with leiomyomatosis. This enzyme acts as a tumor suppressor in familial leiomyomata, and its measured activity is very low or absent in tumors from individuals with leiomyomatosis. Mutations in FH also occur in the recessive condition fumarate hydratase deficiency, and some parents of people with this condition are susceptible to leiomyomata. Thus, heterozygous and homozygous or compound heterozygous mutants have very different clinical phenotypes. Our results provide clues to the pathogenesis of fibroids and emphasize the importance of mutations of housekeeping and mitochondrial proteins in the pathogenesis of common types of tumor.


International Journal of Cancer | 1999

Cancer risk in mutation carriers of DNA‐mismatch‐repair genes

Markku Aarnio; Risto Sankila; Eero Pukkala; Reijo Salovaara; Lauri A. Aaltonen; Albert de la Chapelle; Päivi Peltomäki; Jukka-Pekka Mecklin; Heikki Järvinen

Excessive incidence of various cancers is a challenging feature of the hereditary‐non‐polyposis‐colorectal‐cancer (HNPCC) syndrome. This study estimated the cancer incidences in HNPCC compared with the general population. Individuals in a cohort of 1763 members of 50 genetically diagnosed families were categorized according to their genetic status as mutation carriers, non‐carriers, or individuals at 50 or 25% risk of being a carrier. Incidences of cancers in these groups were compared with those in the Finnish population overall. In 360 mutation carriers, standardized incidence ratios (SIR) were significantly increased for colorectal [68; 95% confidence intervals (CI), 56 to 81], endometrial (62; 95% CI, 44 to 86), ovarian (13; 95% CI, 5.3 to 25), gastric (6.9; 95% CI, 3.6 to 12), biliary tract (9.1; 95% CI, 1.1 to 33), uro‐epithelial (7.6; 95% CI, 2.5 to 18) and kidney (4.7; 95% CI, 1 to 14) cancers and for central‐nervous‐system tumours (4.5; 95% CI, 1.2 to 12). The SIR increased with increasing likelihood of being a mutation carrier. The cumulative cancer incidences were 82, 60, 13 and 12% for colorectal, endometrial, gastric and ovarian cancers respectively. For other tumours associated with increased risk, corresponding incidences were below 4%. Interestingly, the incidence of endometrial cancer (60%) exceeded that for colorectal cancer in women (54%). The tumour spectrum associated with germline mutations of DNA‐mismatch‐repair genes involves 8 or more organ sites, suggesting a need to develop methods to screen for extra‐colonic cancer also. Int. J. Cancer 81:214–218, 1999.


The New England Journal of Medicine | 1998

Incidence of Hereditary Nonpolyposis Colorectal Cancer and the Feasibility of Molecular Screening for the Disease

Lauri A. Aaltonen; Reijo Salovaara; Paula Kristo; Federico Canzian; Akseli Hemminki; Päivi Peltomäki; Robert B. Chadwick; Helena Kääriäinen; Matti Eskelinen; Heikki Järvinen; Jukka-Pekka Mecklin; Albert de la Chapelle; Antonio Percesepe; Heikki Ahtola; Niilo Härkönen; Risto Julkunen; Eero Kangas; Seppo Ojala; Jukka Tulikoura; Erkki Valkamo

BACKGROUNDnGenetic disorders that predispose people to colorectal cancer include the polyposis syndromes and hereditary nonpolyposis colorectal cancer. In contrast to the polyposis syndromes, hereditary nonpolyposis colorectal cancer lacks distinctive clinical features. However, a germ-line mutation of DNA mismatch-repair genes is a characteristic molecular feature of the disease. Since clinical screening of carriers of such mutations can help prevent cancer, it is important to devise strategies applicable to molecular screening for this disease.nnnMETHODSnWe prospectively screened tumor specimens obtained from 509 consecutive patients with colorectal adenocarcinomas for DNA replication errors, which are characteristic of hereditary colorectal cancers. These replication errors were detected through microsatellite-marker analyses of tumor DNA. DNA from normal tissue from the patients with replication errors was screened for germ-line mutations of the mismatch-repair genes MLH1 and MSH2.nnnRESULTSnAmong the 509 patients, 63 (12 percent) had replication errors. Specimens of normal tissue from 10 of these 63 patients had a germ-line mutation of MLH1 or MSH2. Of these 10 patients (2 percent of the 509 patients), 9 had a first-degree relative with endometrial or colorectal cancer, 7 were under 50 years of age, and 4 had had colorectal or endometrial cancer previously.nnnCONCLUSIONSnIn this series of patients with colorectal cancer in Finland, at least 2 percent had hereditary nonpolyposis colorectal cancer. We recommend testing for replication errors in all patients with colorectal cancer who meet one or more of the following criteria: a family history of colorectal or endometrial cancer, an age of less than 50 years, and a history of multiple colorectal or endometrial cancers. Patients found to have replication errors should undergo further analysis for germ-line mutations in DNA mismatch-repair genes.


American Journal of Pathology | 2000

Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers.

Shannon Kuismanen; Mari T. Holmberg; Reijo Salovaara; Albert de la Chapelle; Päivi Peltomäki

Microsatellite instability (MSI) is a hallmark of hereditary nonpolyposis colorectal cancer, and in these patients, results from inherited defects in DNA mismatch repair genes, mostly MSH2 and MLH1. MSI also occurs in 15% of sporadic colorectal cancers, but in these tumors, its basis is less well characterized. We investigated 46 sporadic MSI+ colorectal cancers for changes in MSH2 and MLH1 protein expression, followed by the analysis of somatic mutation, loss of heterozygosity (LOH), and promoter hypermethylation as possible underlying defects. Most cases (36/46, 78%) showed lost or reduced MLH1 expression. Among these, a majority (83%) was associated with MLH1 promoter hypermethylation, whereas the rates of LOH and somatic mutation of MLH1 were 24% and 13%, respectively. Hypermethylation and LOH were inversely correlated, suggesting that they had alternative functions in the inactivation of MLH1. MSH2 expression was lost in 7/46 (15%), and of these, 2 (29%) showed LOH and/or somatic mutation of MSH2. We conclude that most sporadic MSI+ colorectal cancers have an MLH1-associated etiology and that epigenetic modification is a major mechanism of MLH1 inactivation. Moreover, we found a significantly lower prevalence for MLH1 promoter hypermethylation in hereditary nonpolyposis colorectal cancer tumors with MLH1 germline mutations (12/26, 46%), which might explain some differences that are known to occur in the clinicopathological characteristics and tumorigenic pathways between sporadic and hereditary MSI+ colorectal cancers.


American Journal of Human Genetics | 2001

Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of cowden and bannayan-riley-ruvalcaba syndromes

Xiao-Ping Zhou; Kelly Woodford-Richens; Rainer Lehtonen; Keisuke Kurose; Micheala A. Aldred; Heather Hampel; Virpi Launonen; Sanno Virta; Robert Pilarski; Reijo Salovaara; Walter F. Bodmer; Beth A. Conrad; Malcolm G. Dunlop; Shirley Hodgson; Takeo Iwama; Heikki Järvinen; Ilmo Kellokumpu; Jin Cheon Kim; Barbara A. Leggett; David Markie; Jukka-Pekka Mecklin; Kay Neale; Robin K. S. Phillips; Juan Piris; Paul Rozen; Richard S. Houlston; Lauri A. Aaltonen; Ian Tomlinson; Charis Eng

Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor beta-receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype.


Nature Genetics | 1999

The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability.

Antonio Riccio; Lauri A. Aaltonen; Andrew K. Godwin; Anu Loukola; Antonio Percesepe; Reijo Salovaara; Valeria Masciullo; Maurizio Genuardi; Maria Paravatou-Petsotas; Daniel E. Bassi; Bruce Ruggeri; Andres J. Klein-Szanto; Joseph R. Testa; Giovanni Neri; Alfonso Bellacosa

The DNA repair gene MBD4 ( MED1 ) is mutated in human carcinomas with microsatellite instability


American Journal of Pathology | 2001

Familial Cutaneous Leiomyomatosis Is a Two-Hit Condition Associated with Renal Cell Cancer of Characteristic Histopathology

Maija Kiuru; Virpi Launonen; Marja Hietala; Kristiina Aittomäki; Outi Vierimaa; Reijo Salovaara; Johanna Arola; Eero Pukkala; Pertti Sistonen; Riitta Herva; Lauri A. Aaltonen

Little has been known about the molecular background of familial multiple cutaneous leiomyomatosis (MCL). We report here a clinical, histopathological, and molecular study of a multiple cutaneous leiomyomatosis kindred with seven affected members. This detailed study revealed strong features of a recently described cancer predisposition syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC). The family was compatible with linkage to the HLRCC locus in 1q. Also, all seven cutaneous leiomyomas derived from the proband and analyzed for loss of heterozygosity displayed loss of the wild-type allele, confirming the association with a susceptibility gene in chromosome 1q. One individual had had renal cell cancer at the age of 35 years. This tumor displayed a rare papillary histopathology, which appears to be characteristic for HLRCC. The derived linkage, loss of heterozygosity, and clinical data suggest that MCL and HLRCC are a single disease with a variable phenotype. The possibility that members of leiomyomatosis families are predisposed to renal cell cancer should be taken into account.


American Journal of Pathology | 2002

PTEN Mutational Spectra, Expression Levels, and Subcellular Localization in Microsatellite Stable and Unstable Colorectal Cancers

Xiao Ping Zhou; Anu Loukola; Reijo Salovaara; Minna Nyström-Lahti; Päivi Peltomäki; Albert de la Chapelle; Lauri A. Aaltonen; Charis Eng

PTEN on 10q23.3 encodes a dual-specificity phosphatase that negatively regulates the phosphoinositol-3-kinase/Akt pathway and mediates cell-cycle arrest and apoptosis. Germline PTEN mutations cause Cowden syndrome and a range of several different hamartoma-tumor syndromes. Hereditary nonpolyposis colon cancer (HNPCC) syndrome is characterized by germline mutations in the mismatch repair (MMR) genes and by microsatellite instability (MSI) in component tumors. Although both colorectal carcinoma and endometrial carcinoma are the most frequent component cancers in HNPCC, only endometrial cancer has been shown to be a minor component of Cowden syndrome. We have demonstrated that somatic inactivation of PTEN is involved in both sporadic endometrial cancers and HNPCC-related endometrial cancers but with different mutational spectra and different relationships to MSI. In the current study, we sought to determine the relationship of PTEN mutation, 10q23 loss of heterozygosity, PTEN expression, and MSI status in colorectal cancers (CRCs). Among 11 HNPCC CRCs, 32 MSI+ sporadic cancers, and 39 MSI- tumors, loss of heterozygosity at 10q23.3 was found in 0%, 8%, and 19%, respectively. Somatic mutations were found in 18% (2 of 11) of the HNPCC CRCs and 13% (4 of 32) of the MSI+ sporadic tumors, but not in MSI- cancers (P = 0.015). All somatic mutations occurred in the two 6(A) coding mononucleotide tracts in PTEN, suggestive of the etiological role of the deficient MMR. Immunohistochemical analysis revealed 31% (14 of 45) of the HNPCC CRCs and 41% (9 of 22) of the MSI+ sporadic tumors with absent or depressed PTEN expression. Approximately 17% (4 of 23) of the MSI- CRCs had decreased PTEN expression, and no MSI- tumor had complete loss of PTEN expression. Among the five HNPCC or MSI+ sporadic CRCs carrying frameshift somatic mutations with immunohistochemistry data, three had lost all PTEN expression, one showed weak PTEN expression levels, and one had mixed tumor cell populations with weak and moderate expression levels. These results suggest that PTEN frameshift mutations in HNPCC and sporadic MSI+ tumors are a consequence of mismatch repair deficiency. Further, hemizygous deletions in MSI- CRCs lead to loss or reduction of PTEN protein levels and contribute to tumor progression. Finally, our data also suggest that epigenetic inactivation of PTEN, including differential subcellular compartmentalization, occurs in CRCs.


International Journal of Cancer | 1997

Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome

Markku Aarnio; Reijo Salovaara; Lauri A. Aaltonen; Jukka-Pekka Mecklin; Heikki Järvinen

To identify characteristics of gastric cancer associated with hereditary non‐polyposis colorectal cancer (HNPCC), we gathered clinical data and tumor samples relating to patients recorded in the Finnish HNPCC registry. Our series included 51 families with a characterized mutation and/or that met the Amsterdam criteria. Of 570 members affected by malignancy, gastric cancer occurred in 62. Adequate clinical data were obtained for 45 patients. Tumor samples from 24 patients were re‐examined. The mean age of diagnosis of gastric cancer was 56 years. The average percentage of all cancers within a family was 11 (range 0–40). Nineteen were of the intestinal type. Only 3 were of the diffuse type. Helicobacter pylori infection was demonstrated in 3 of 15 cases. Replication error (RER) phenotype was present clearly in 7 cases and at least fairly clearly in 11. The overall 5‐year survival rate was 15%. The 5‐year survival rate was 48% in cases in whom radical surgery had been undertaken. Our results support the view that gastric cancer belongs to the tumor spectrum of HNPCC. The intestinal type of histology is characteristic, as is the RER+ phenotype, but H. pylori infection was rare. Int. J. Cancer 74:551–555, 1997.

Collaboration


Dive into the Reijo Salovaara's collaboration.

Top Co-Authors

Avatar

Lauri A. Aaltonen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jukka-Pekka Mecklin

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anu Loukola

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge