Reiko Fujinawa
Kobe Pharmaceutical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reiko Fujinawa.
Glycobiology | 2010
Kazuki Nakajima; Shinobu Kitazume; Takashi Angata; Reiko Fujinawa; Kazuaki Ohtsubo; Eiji Miyoshi; Naoyuki Taniguchi
Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.
Embo Molecular Medicine | 2015
Yasuhiko Kizuka; Shinobu Kitazume; Reiko Fujinawa; Takashi Saito; Nobuhisa Iwata; Takaomi C. Saido; Miyako Nakano; Yoshiki Yamaguchi; Yasuhiro Hashimoto; Matthias Staufenbiel; Hiroyuki Hatsuta; Shigeo Murayama; Hiroshi Manya; Tamao Endo; Naoyuki Taniguchi
The β‐site amyloid precursor protein cleaving enzyme‐1 (BACE1), an essential protease for the generation of amyloid‐β (Aβ) peptide, is a major drug target for Alzheimers disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N‐acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT‐III (Mgat3), revealed that cleavage of Aβ‐precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in Aβ plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin‐2, are normally cleaved in GnT‐III‐deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT‐III‐deficient mice remain healthy, GnT‐III may be a novel and promising drug target for AD therapeutics.
American Journal of Respiratory Cell and Molecular Biology | 2013
Satoshi Kobayashi; Reiko Fujinawa; Fumi Ota; Shiho Kobayashi; Takashi Angata; Manabu Ueno; Toshitaka Maeno; Shinobu Kitazume; Keiichi Yoshida; Takeo Ishii; Congxiao Gao; Kazuaki Ohtsubo; Yoshiki Yamaguchi; Tomoko Betsuyaku; Kozui Kida; Naoyuki Taniguchi
Chronic obstructive pulmonary disease (COPD), manifested as emphysema and chronic airway obstruction, can be exacerbated by bacterial and viral infections. Although the frequency of exacerbations increases as the disease progresses, the mechanisms underlying this phenomenon are largely unknown, and there is a need for a simple in vivo exacerbation model. In this study, we compared four groups of mice treated with PBS alone, elastase alone, LPS alone, and elastase plus LPS. A single intratracheal administration of LPS to mice with elastase-induced emphysema provoked infiltration of inflammatory cells, especially CD8(+) T cells, into alveolar spaces and increased matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and perforin production in bronchoalveolar lavage fluid at the acute inflammatory phase compared with the other groups. We also measured the percentage of low-attenuation area (LAA%) in the above mice using micro-computed X-ray tomography. The LAA% was the most sensitive parameter for quantitative assessments of emphysema among all the parameters evaluated. Using the parameter of LAA%, we found significantly more severe alveolar destruction in the group treated with elastase plus LPS compared with the other groups during long-term longitudinal observations. We built three-dimensional images of the emphysema and confirmed that the lungs of elastase plus LPS-treated mice contained larger emphysematous areas than mice treated with elastase alone. Although human exacerbation of COPD is clinically and pathologically complicated, this simple mouse model mimics human cases to some extent and will be useful for elucidating its mechanism and developing therapeutic strategies.
Annals of the New York Academy of Sciences | 2012
Takashi Angata; Reiko Fujinawa; Ayako Kurimoto; Kazuki Nakajima; Masaki Kato; Shinji Takamatsu; Hiroaki Korekane; Cong Xiao Gao; Kazuaki Ohtsubo; Shinobu Kitazume; Naoyuki Taniguchi
Glycobiology has contributed tremendously to the discovery and characterization of cancer‐related biomarkers containing glycans (i.e., glyco‐biomarkers) and a more detailed understanding of cancer biology. It is now recognized that most chronic diseases involve some elements of chronic inflammation; these include cancer, Alzheimers disease, and metabolic syndrome (including consequential diabetes mellitus and cardiovascular diseases). By extending the knowledge and experience of the glycobiology community regarding cancer biomarker discovery, we should be able to contribute to the discovery of diagnostic/prognostic glyco‐biomarkers of other chronic diseases that involve chronic inflammation. Future integration of large‐scale “omics”‐type data (e.g., genomics, epigenomics, transcriptomics, proteomics, and glycomics) with computational model building, or a systems glycobiology approach, will facilitate such efforts.
Journal of Biological Chemistry | 2014
Ayako Kurimoto; Shinobu Kitazume; Yasuhiko Kizuka; Kazuki Nakajima; Ritsuko Oka; Reiko Fujinawa; Hiroaki Korekane; Yoshiki Yamaguchi; Yoshinao Wada; Naoyuki Taniguchi
Background: Little is known about how loss of a given glycan causes adaptive regulation of other glycosylation. Results: Deficiency in core α1,6-fucose specifically up-regulates bisecting GlcNAc by enhanced gene expression of a biosynthetic enzyme GnT-III. Conclusion: Wnt signaling pathway regulates the expression of GnT-III. Significance: Wnt-mediated GnT-III up-regulation may be an adaptive response to the loss of core fucose. Glycans play key roles in a variety of protein functions under normal and pathological conditions, but several glycosyltransferase-deficient mice exhibit no or only mild phenotypes due to redundancy or compensation of glycan functions. However, we have only a limited understanding of the underlying mechanism for these observations. Our previous studies indicated that 70% of Fut8-deficient (Fut8−/−) mice that lack core fucose structure die within 3 days after birth, but the remainder survive for up to several weeks although they show growth retardation as well as emphysema. In this study, we show that, in mouse embryonic fibroblasts (MEFs) from Fut8−/− mice, another N-glycan branching structure, bisecting GlcNAc, is specifically up-regulated by enhanced gene expression of the responsible enzyme N-acetylglucosaminyltransferase III (GnT-III). As candidate target glycoproteins for bisecting GlcNAc modification, we confirmed that level of bisecting GlcNAc on β1-integrin and N-cadherin was increased in Fut8−/− MEFs. Moreover using mass spectrometry, glycan analysis of IgG1 in Fut8−/− mouse serum demonstrated that bisecting GlcNAc contents were also increased by Fut8 deficiency in vivo. As an underlying mechanism, we found that in Fut8−/− MEFs Wnt/β-catenin signaling is up-regulated, and an inhibitor against Wnt signaling was found to abrogate GnT-III expression, indicating that Wnt/β-catenin is involved in GnT-III up-regulation. Furthermore, various oxidative stress-related genes were also increased in Fut8−/− MEFs. These data suggest that Fut8−/− mice adapted to oxidative stress, both ex vivo and in vivo, by inducing various genes including GnT-III, which may compensate for the loss of core fucose functions.
Biochimica et Biophysica Acta | 2012
Motoko Takahashi; Satoshi Miyata; Junichi Fujii; Yoko Inai; Shigemitsu Ueyama; Motoko Araki; Tomoyoshi Soga; Reiko Fujinawa; Chiaki Nishitani; Shigeru Ariki; Takeyuki Shimizu; Tomomi Abe; Yoshito Ihara; Morimitsu Nishikimi; Yasunori Kozutsumi; Naoyuki Taniguchi; Yoshio Kuroki
BACKGROUND Aldehyde reductase (AKR1A; EC 1.1.1.2) catalyzes the reduction of various types of aldehydes. To ascertain the physiological role of AKR1A, we examined AKR1A knockout mice. METHODS Ascorbic acid concentrations in AKR1A knockout mice tissues were examined, and the effects of human AKR1A transgene were analyzed. We purified AKR1A and studied the activities of glucuronate reductase and glucuronolactone reductase, which are involved in ascorbic acid biosynthesis. Metabolomic analysis and DNA microarray analysis were performed for a comprehensive study of AKR1A knockout mice. RESULTS The levels of ascorbic acid in tissues of AKR1A knockout mice were significantly decreased which were completely restored by human AKR1A transgene. The activities of glucuronate reductase and glucuronolactone reductase, which are involved in ascorbic acid biosynthesis, were suppressed in AKR1A knockout mice. The accumulation of d-glucuronic acid and saccharate in knockout mice tissue and the expression of acute-phase proteins such as serum amyloid A2 are significantly increased in knockout mice liver. CONCLUSIONS AKR1A plays a predominant role in the reduction of both d-glucuronic acid and d-glucurono-γ-lactone in vivo. The knockout of AKR1A in mice results in accumulation of d-glucuronic acid and saccharate as well as a deficiency of ascorbic acid, and also leads to upregulation of acute phase proteins. GENERAL SIGNIFICANCE AKR1A is a major enzyme that catalyzes the reduction of d-glucuronic acid and d-glucurono-γ-lactone in vivo, besides acting as an aldehyde-detoxification enzyme. Suppression of AKR1A by inhibitors, which are used to prevent diabetic complications, may lead to the accumulation of d-glucuronic acid and saccharate.
Glycobiology | 2009
Shuhei Yamada; Masako Onishi; Reiko Fujinawa; Yuko Tadokoro; Koji Okabayashi; Makoto Asashima; Kazuyuki Sugahara
Xenopus laevis is an excellent animal for analyzing early vertebrate development. Various effects of glycosaminoglycans (GAGs) on growth factor-related cellular events during embryogenesis have been demonstrated in Xenopus. To elucidate the relationship between alterations in fine structure and changes in the specificity of growth factor binding during Xenopus development, heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) chains were isolated at four different embryonic stages and their structure and growth factor-binding capacities were compared. The total amounts of both HS and CS/DS chains decreased from the pre-midblastula transition to the gastrula stage, but increased exponentially during the following developmental stages. The length of HS chains was not significantly affected by development, whereas that of CS/DS chains increased with development. The disaccharide composition of GAGs in embryos also changed during development. The degree of sulfation of the HS chains gradually decreased with development. The predominant sulfation position in the CS/DS chains shifted from C4 to C6 of GalNAc during embryogenesis. Growth factor-binding experiments using a BIAcore system demonstrated that GAGs bound growth factors including fibroblast growth factors-1 and -2, midkine, and pleiotrophin, with comparable affinities. These affinities significantly varied during development, although the correlation between the structural alterations of GAGs and the change in the ability to bind growth factors remains to be clarified. The expression of saccharide sequences, which specifically interact with a growth factor, might be regulated during development.
Biochemical and Biophysical Research Communications | 2012
Koichiro Kamio; Takayuki Yoshida; Congxiao Gao; Takeo Ishii; Fumi Ota; Takashi Motegi; Satoshi Kobayashi; Reiko Fujinawa; Kazuaki Ohtsubo; Shinobu Kitazume; Takashi Angata; Arata Azuma; Akihiko Gemma; Masaharu Nishimura; Tomoko Betsuyaku; Kozui Kida; Naoyuki Taniguchi
Fut8 (α1,6-Fucosyltransferase) heterozygous knock-out (Fut8(+/-)) mice had an increased influx of inflammatory cells into the lungs, and this was associated with an up-regulation of matrix metalloproteinases, MMP-2 and MMP-9, after treatment with porcine pancreatic elastase (PPE), exhibiting an emphysema-prone phenotype as compared with wild type mice (Fut8(+/+)). The present data as well as our previous data on cigarette-smoke-induced emphysema [8] led us to hypothesize that reduced Fut8 levels leads to COPD with increased inflammatory response in humans and is associated with disease progression. To test this hypothesis, symptomatic current or ex-smokers with stable COPD or at risk outpatients were recruited. We investigated the association between serum Fut8 activity and disease severity, including the extent of emphysema (percentage of low-attenuation area; LAA%), airflow limitation, and the annual rate of decline in forced expiratory volume in 1 s (FEV(1)). Association with the exacerbation of COPD was also evaluated over a 3-year period. Serum Fut8 and MMP-9 activity were measured. Fut8 activity significantly increased with age among the at risk patients. In the case of COPD patients, however, the association was not clearly observed. A faster annual decline of FEV(1) was significantly associated with lower Fut8 activity. Patients with lower Fut8 activity experienced exacerbations more frequently. These data suggest that reduced Fut8 activity is associated with the progression of COPD and serum Fut8 activity is a non-invasive predictive biomarker candidate for progression and exacerbation of COPD.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2017
Congxiao Gao; Reiko Fujinawa; Takayuki Yoshida; Manabu Ueno; Fumi Ota; Yasuhiko Kizuka; Tetsuya Hirayama; Hiroaki Korekane; Shinobu Kitazume; Toshitaka Maeno; Kazuaki Ohtsubo; Keiichi Yoshida; Yoshiki Yamaguchi; Bernd Lepenies; Jonas Aretz; Christoph Rademacher; Ahmed E. Hegab; Peter H. Seeberger; Tomoko Betsuyaku; Kozui Kida; Naoyuki Taniguchi
Emphysema is a typical component of chronic obstructive pulmonary disease (COPD), a progressive and inflammatory airway disease. However, no effective treatment currently exists. Here, we show that keratan sulfate (KS), one of the major glycosaminoglycans produced in the small airway, decreased in lungs of cigarette smoke-exposed mice. To confirm the protective effect of KS in the small airway, a disaccharide repeating unit of KS designated L4 ([SO3--6]Galβ1-4[SO3--6]GlcNAc) was administered to two murine models: elastase-induced-emphysema and LPS-induced exacerbation of a cigarette smoke-induced emphysema. Histological and microcomputed tomography analyses revealed that, in the mouse elastase-induced emphysema model, administration of L4 attenuated alveolar destruction. Treatment with L4 significantly reduced neutrophil influx, as well as the levels of inflammatory cytokines, tissue-degrading enzymes (matrix metalloproteinases), and myeloperoxidase in bronchoalveolar lavage fluid, suggesting that L4 suppressed inflammation in the lung. L4 consistently blocked the chemotactic migration of neutrophils in vitro. Moreover, in the case of the exacerbation model, L4 inhibited inflammatory cell accumulation to the same extent as that of dexamethasone. Taken together, L4 represents one of the potential glycan-based drugs for the treatment of COPD through its inhibitory action against inflammation.
Biochimica et Biophysica Acta | 2018
Fumi Ota; Tetsuya Hirayama; Yasuhiko Kizuka; Yoshiki Yamaguchi; Reiko Fujinawa; Masahiro Nagata; Hendra S. Ismanto; Bernd Lepenies; Jonas Aretz; Christoph Rademacher; Peter H. Seeberger; Takashi Angata; Shinobu Kitazume; Keiichi Yoshida; Tomoko Betsuyaku; Kozui Kida; Sho Yamasaki; Naoyuki Taniguchi
BACKGROUND Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.