Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reiner F. Haseloff is active.

Publication


Featured researches published by Reiner F. Haseloff.


Cellular and Molecular Neurobiology | 2005

In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro.

Reiner F. Haseloff; Ingolf E. Blasig; Hannelore Bauer; Hans-Christian Bauer

Summary1. The blood–brain barrier (BBB) is formed by brain capillary endothelial cells (ECs). There are various cell types, in particular astrocytes, but also pericytes and neurons, located in close vicinity to the capillary ECs which may influence formation and function of the BBB. Based on this consideration, this paper discusses various aspects of the influence of the surrounding cells on brain capillary ECs with special focus on the role of astrocytes.2. Based on the morphology of the BBB, important aspects of brain EC functions are summarized, such as transport functions and maintenance of low paracellular permeability. Moreover, various facets are discussed with respect to the influence of astrocytes, pericytes, microglia, and neurons on the BBB. Data on the role of glial cells in the ontogenesis of the BBB are presented subsequently. The knowledge on this subject is far from being complete, however, these data imply that the neural/neuronal environment rather than glial cells may be of importance in the maturation of the barrier.3. The role of glial cells in the induction and maintenance of the BBB is discussed under physiological as well as pathological conditions. Although the literature presents manifold evidence for a great variety of effects induced by astroglia, there are also many controversies, which may result from different cellular models and experimental conditions used in the respective studies. Numerous factors secreted by astrocytes have been shown to induce a BBB phenotype. On the molecular level, increased expression of barrier-relevant proteins (e.g., tight junction proteins) is documented in the presence of astrocyte-derived factors, and many studies demonstrate the improvement of physiological parameters, such as increased transendothelial resistance and decreased paracellular permeability, in different in vitro models of the BBB. Moreover, one has to take into account that the interaction of brain ECs and astrocytes is bi-directional, and that the other cell types surrounding the brain microvasculature also contribute to BBB function or dysfunction, respectively.4. In conclusion, it is expected that the present and future research focused on molecular mechanisms and signaling pathways will produce new and exciting insights into the complex network of BBB regulation: the cornerstone is laid.


Seminars in Cell & Developmental Biology | 2015

Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects.

Reiner F. Haseloff; Sophie Dithmer; Lars Winkler; Hartwig Wolburg; Ingolf E. Blasig

The blood-brain barrier (BBB) is formed by microvascular endothelial cells sealed by tetraspanning tight junction (TJ) proteins, such as claudins and TAMPs (TJ-associated marvel proteins, occludin and tricellulin). Claudins are the major components of the TJs. At the BBB, claudin-5 dominates the TJs by preventing the paracellular permeation of small molecules. On the other hand, TAMPs regulate the structure and function of the TJs; tricellulin may tighten the barrier for large molecules. This review aims at integrating and summarizing the most relevant and recent work on how the BBB is influenced by claudin-1, -3, -5, -12 and the TAMPs occludin and tricellulin, all of which are four-transmembrane TJ proteins. The exact functions of claudin-1, -3, -12 and TAMPs at this barrier still need to be elucidated.


FEBS Letters | 1998

Nitric oxide protects blood-brain barrier in vitro from hypoxia/reoxygenation-mediated injury.

Darkhan I. Utepbergenov; Katharina Mertsch; Anje Sporbert; Kareen Tenz; Martin Paul; Reiner F. Haseloff; Ingolf E. Blasig

A cell culture model of blood‐brain barrier (BBB, coculture of rat brain endothelial cells with rat astrocytes) was used to investigate the effect of nitric oxide (⋅NO) on the damage of the BBB induced by hypoxia/reoxygenation (H/R). Permeability coefficient of fluorescein across the endothelium was used as a marker of BBB tightness. The permeability coefficient increased 5.2 times after H/R indicating strong disruption of the BBB. The presence of the ⋅NO donor S‐nitroso‐N‐acetylpenicillamine (SNAP, 30 μM), authentic ⋅NO (6 μM) or superoxide dismutase (50 units/ml) during H/R attenuated H/R‐induced increase in permeability. 30 μM SNAP or 6 μM ⋅NO did not influence the function of BBB during normoxia, however, severe disruption was observed using 150 μM of SNAP and more than 24 μM of ⋅NO. After H/R of endothelial cells, the content of malondialdehyde (MDA) increased 2.3 times indicating radical‐induced peroxidation of membrane lipids. 30 μM SNAP or 6 μM authentic ⋅NO completely prevented MDA formation. The results show that ⋅NO may effectively scavenge reactive oxygen species formed during H/R of brain capillary endothelial cells, affording protection of BBB at the molecular and functional level.


Antioxidants & Redox Signaling | 2011

Occludin Protein Family: Oxidative Stress and Reducing Conditions

Ingolf E. Blasig; Christian Bellmann; Jimmi Cording; Giovanna del Vecchio; Denise Zwanziger; Otmar Huber; Reiner F. Haseloff

The occludin-like proteins belong to a family of tetraspan transmembrane proteins carrying a marvel domain. The intrinsic function of the occludin family is not yet clear. Occludin is a unique marker of any tight junction and is found in polarized endothelial and epithelial tissue barriers, at least in the adult vertebrate organism. Occludin is able to oligomerize and to form tight junction strands by homologous and heterologous interactions, but has no direct tightening function. Its oligomerization is affected by pro- and antioxidative agents or processes. Phosphorylation of occludin has been described at multiple sites and is proposed to play a regulatory role in tight junction assembly and maintenance and, hence, to influence tissue barrier characteristics. Redox-dependent signal transduction mechanisms are among the pathways modulating occludin phosphorylation and function. This review discusses the novel concept that occludin plays a key role in the redox regulation of tight junctions, which has a major impact in pathologies related to oxidative stress and corresponding pharmacologic interventions.


Molecular Brain Research | 1999

Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes

Anje Sporbert; Katharina Mertsch; Albert Smolenski; Reiner F. Haseloff; Gilbert Schönfelder; Martin Paul; Peter Ruth; Ulrich Walter; Ingolf E. Blasig

There is contradictory information on the relevance of nitric oxide (NO) and cGMP for the function of brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). Therefore, NO/cGMP-mediated signal transduction was investigated in cell cultures of BCEC and of astrocytes (AC) inducing BBB properties in BCEC. Constitutive, Ca2+-activated isoforms of NO synthase (NOS) were found in BCEC (endothelial NOS: eNOS) and in AC (neuronal NOS: nNOS), leading to increased NO release after incubation with the Ca2+-ionophore A23187. Both cell types expressed inducible NOS (iNOS) after incubation with cytokines. Soluble guanylate cyclase (sGC) was detected in both cell types. NO-dependent cGMP formation were observed in BCEC and, less pronounced, in AC. Furthermore, both cell types formed cGMP independently of NO via stimulation of particulate guanylate cyclase (pGC). cGMP-dependent protein kinase (PKG) type Ibeta, but not type II, was expressed in BCEC and AC. In BCEC, vasodilator-stimulated phosphoprotein (VASP) was detected, an established substrate of PKG and associated with microfilaments and cell-cell contacts. Phosphorylation of VASP was intensified by increased intracellular cGMP concentrations. The results indicate that BCEC and, to a smaller degree, AC can form NO and cGMP in response to different stimuli. In BCEC, NO/cGMP-dependent phosphorylation of VASP is demonstrated, thus providing a possibility of influencing cell-cell contacts.


FEBS Letters | 1997

Cytotoxicity of spin trapping compounds

Reiner F. Haseloff; Katharina Mertsch; Elvira Rohde; Ingo Baeger; I. A. Grigor'ev; Ingolf E. Blasig

Spin trapping compounds are used frequently to detect free radicals released by cells. Their cytotoxicity has to be considered in order to prevent perturbations of normal cell growth and viability. Eleven spin traps (eight nitrones and three nitroso traps) have been tested for their effects on bovine aortic endothelial cells (toxicity range, 50% survival rate). The lowest cytotoxicity was found for 5,5‐dimethylpyrroline‐1‐oxide and 2,2,4‐trimethyl‐2H‐imidazole‐1‐oxide whereas nitrosobenzene and 2‐methyl‐2‐nitrosopropane exerted the strongest cytotoxic effects. In addition, three nitronyl nitroxides were tested. Their cytotoxicity was found to be dependent on substitution, and the toxic concentration of a lipophilic derivative was found to be more than two orders lower as compared to a hydrophilic derivative. The results of this study indicate that most spin traps can be used in cell cultures at customary (i.e. millimolar) concentrations; caution is recommended when nitroso spin traps are applied to cells.


Journal of Biological Chemistry | 1997

Nitroxides Increase the Detectable Amount of Nitric Oxide Released from Endothelial Cells

Stefan Zöllner; Reiner F. Haseloff; Igor A. Kirilyuk; Ingolf E. Blasig; Gabor M. Rubanyi

Nitroxides are known to exert superoxide dismutase-mimetic properties and to decrease O·̄2- and H2O2-mediated cytotoxicity. However, the effect of nitroxides on ⋅NO homeostasis has not been studied yet. The present study investigates the effect of nitroxides on the detectable amount of ⋅NO released by 3-morpholinosydnonimine (SIN-1) and cultured endothelial cells. Cultured bovine aortic and atrial endothelial cells stimulated with 10 μm A23187 released a stable flux of ⋅NO, as detected by ⋅NO chemiluminescence. Addition of 100 units/ml SOD or 10 μmof the nitroxides 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL), 3-carboxy-proxyl, and 3-ethoxycarbonyl-proxyl, increased the chemiluminescence signal. The effect of these nitroxides on the amount of ⋅NO released from cell monolayers was dose-dependent, with the highest efficacy between 30 and 100 μm. EPR spin trapping in SIN-1 solutions revealed the formation of ⋅OH adducts from spontaneous dismutation of O·̄2 and concomitant reaction with H2O2. Both SOD and TEMPOL increased the signal intensity of the ⋅OH adduct by accelerating the dismutation of O·̄2. The results of this study demonstrate that the SOD-mimetic activity of nitroxides increases the amount of bioavailable ⋅NO in vitro.


Free Radical Research | 1997

Superoxide-Mediated Reduction of the Nitroxide Group Can Prevent Detection of Nitric Oxide by Nitronyl Nitroxides

Reiner F. Haseloff; Stefan Zöllner; Igor a. Kirilylik; I. A. Grigor'ev; Regina Reszka; Rita Bernhardt; Katharina Mertsch; Birgit Roloff; Ingolf E. Blasig

Nitronyl nitroxides (NN), a class of compounds which react with nitric oxide forming imino nitroxides, were applied in different systems for the detection of nitric oxide. Addition of a NN to planar monolayers of bovine aortic endothelial cells (BAEC) activated by Ca2+ ionophore A23187 immediately resulted in a strong decrease of the ozone-mediated .NO chemiluminescence. Simultaneously, a rapid diminution of the electron spin resonance (ESR) signal intensity of the NN (without detectable formation of the corresponding imino nitroxide) was observed; superoxide dismutase partially inhibited this decrease in the NN concentration. Model experiments using hypoxanthine/xanthine oxidase in aqueous solution and KO2 in dimethylsulfoxide as sources of O2.- revealed that there is a rapid reduction of nitronyl nitroxides by superoxide. The second order rate constant for the reaction of the water soluble NN with O2.- was determined to be 8.8 x 10(5) M-1s-1, which is more than two orders of magnitude higher than the value reported previously for reaction with .NO (Woldman et al., BBRC 202, 195-203, 1994). Reduction of the nitronyl nitroxide was also observed in the presence of glutathione, ascorbic acid or rabbit liver microsomes. Incorporation of both nitronyl and imino nitroxides into liposomes strongly decreased reduction by superoxide and other reductants, however, in the presence of microsomes, there was no protective effect by liposomal encapsulation of NN. The results indicate that in biological systems (in addition to other reducing agents) the presence of superoxide can prevent the detection of nitric oxide using nitronyl nitroxides.


Biochemical Pharmacology | 1998

Protective effects of the thiophosphate amifostine (WR 2721) and a lazaroid (U83836E) on lipid peroxidation in endothelial cells during hypoxia/reoxygenation

Katharina Mertsch; Tilman Grune; Steffen Kunstmann; Burkhard Wiesner; Axel Ladhoff; Werner Siems; Reiner F. Haseloff; Ingolf E. Blasig

Little is known about pharmacological interventions with thiophosphates or lazaroids in endothelial cells injured by hypoxia/reoxygenation with respect to membrane lipid peroxidation (LPO) caused by reactive oxygen species. Therefore, a cell line of bovine aortic endothelial cells was studied after 120-min hypoxia followed by 30-min reoxygenation, resulting in moderate and predominantly reversible injury (energy depression/cytosolic Ca2+-accumulation during hypoxia, which almost normalized during reoxygenation; membrane blebs, an increasing amount of lysosomes, vacuolization, lipofuscin formation, alterations in mitochondria size, some lyzed cells). 18.9 +/- 4.3% of the cells died. Radical-induced LPO measured as malondialdehyde continuously increased to 2.18 +/- 0.17 nmol/mg of protein after reoxygenation vs control (0.41 +/- 0.13, P < 0.05). Simultaneously, the content of 4-hydroxynonenal, a novel indicator of LPO, increased from 0.02 +/- 0.01 to 0.11 +/- 0.02 nmol/mg of protein (P < 0.01). The results support the assumption that reoxygenation injury is accompanied by an increase in membrane LPO, causing structural and functional disturbances in the monolayer. The thiophosphate WR 2721 [S-2-(3-aminopropylamino) ethylphosphorothioic acid] and the lazaroid U83836E [(-)-2-[[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl] methyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol (dihydrochloride)] were effective scavengers of .OH, being more efficient than trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carbon acid) used as standard (EC50: 12, 5 and 15 microM, respectively, measured by electron spin resonance spectroscopy). One mM WR 2721, 10 microM U83836E, and 5 microM trolox C reduced formation of malondialdehyde during hypoxia/reoxygenation to 53 +/- 7, 51 +/- 10 and 48 +/- 6%, respectively (P < 0.05 each, versus control). In general, WR 2721 and U83836E prevent radical-induced membrane LPO in a model of endothelial cells injured by hypoxia/reoxygenation. The use of these two agents is a new approach to protect the endothelium against oxidative stress.


Free Radical Biology and Medicine | 2008

Protective effects of peroxiredoxin-1 at the injured blood-brain barrier

Gerty Schreibelt; Jack van Horssen; Reiner F. Haseloff; Arie Reijerkerk; Susanne M. A. van der Pol; Orm Nieuwenhuizen; Eberhard Krause; Ingolf E. Blasig; Christine D. Dijkstra; Eric Ronken; Helga E. de Vries

Reactive oxygen species (ROS) play a pivotal role in the development of neuroinflammatory disorders, such as multiple sclerosis (MS). Here, we studied the effect of ROS on protein expression in brain endothelial cells (BECs) using proteomic techniques and show that long-term exposure to ROS induces adaptive responses in BECs to counteract an oxidative attack. ROS induce differential protein expression in BECs, among which is peroxiredoxin-1 (Prx1). To further study the role of Prx1 we established a BEC line overexpressing Prx1. Our data indicate that Prx-1 overexpression protects BECs from ROS-induced cell death, reduces adhesion and subsequent transendothelial migration of monocytes by decreasing intercellular adhesion molecule-1 expression, and enhances the integrity of the BEC layer. Interestingly, vascular Prx1 immunoreactivity was markedly upregulated in inflammatory lesions of experimental autoimmune encephalomyelitis (EAE) animals and active demyelinating MS lesions. These findings indicate that enhanced vascular Prx1 expression may reflect the occurrence of vascular oxidative stress in EAE and MS. On the other hand, it may function as an endogenous defense mechanism to inhibit leukocyte infiltration and counteract ROS-induced cellular injury.

Collaboration


Dive into the Reiner F. Haseloff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heiko Härtel

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge