Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reinhard W. Köster is active.

Publication


Featured researches published by Reinhard W. Köster.


Nature | 2003

Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis

Jay R. Hove; Reinhard W. Köster; Arian S. Forouhar; Gabriel Acevedo-Bolton; Scott E. Fraser; Morteza Gharib

The pattern of blood flow in the developing heart has long been proposed to play a significant role in cardiac morphogenesis. In response to flow-induced forces, cultured cardiac endothelial cells rearrange their cytoskeletal structure and change their gene expression profiles. To link such in vitro data to the intact heart, we performed quantitative in vivo analyses of intracardiac flow forces in zebrafish embryos. Using in vivo imaging, here we show the presence of high-shear, vortical flow at two key stages in the developing heart, and predict flow-induced forces much greater than might have been expected for micro-scale structures at low Reynolds numbers. To test the relevance of these shear forces in vivo, flow was occluded at either the cardiac inflow or outflow tracts, resulting in hearts with an abnormal third chamber, diminished looping and impaired valve formation. The similarity of these defects to those observed in some congenital heart diseases argues for the importance of intracardiac haemodynamics as a key epigenetic factor in embryonic cardiogenesis.


Journal of Clinical Investigation | 2009

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation

Dominik Paquet; Ratan Bhat; Astrid Sydow; Eva-Maria Mandelkow; Stefan Berg; Sven Hellberg; Johanna Fälting; Martin Distel; Reinhard W. Köster; Bettina Schmid; Christian Haass

Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3beta (GSK3beta). We identified a newly developed highly active GSK3beta inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia.


Mechanisms of Development | 1996

Ectopic lens induction in fish in response to the murine homeobox gene Six3

Guillermo Oliver; Felix Loosli; Reinhard W. Köster; Joachim Wittbrodt; Peter Gruss

Recent findings show an unexpected conservation of genes involved in vertebrate and insect eye development. The Drosophila homeobox gene sine oculis is crucial for eye development. Its murine homologue, Six3 is expressed in the anterior neural plate, a region which is involved in lens induction in Xenopus. To examine whether Six3 participates in the process of eye formation, mouse Six3 was ectopically expressed in fish embryos. The results show that Six3 is sufficient to promote ectopic lens formation in the area of the otic vesicle and that retinal tissue is not a prerequisite for ectopic lens differentiation. Our findings suggest a conserved function for Six3 in metazoan eye development.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Optimized Gal4 genetics for permanent gene expression mapping in zebrafish

Martin Distel; Mario F. Wullimann; Reinhard W. Köster

Combinatorial genetics for conditional transgene activation allows studying gene function with temporal and tissue specific control like the Gal4-UAS system, which has enabled sophisticated genetic studies in Drosophila. Recently this system was adapted for zebrafish and promising applications have been introduced. Here, we report a systematic optimization of zebrafish Gal4-UAS genetics by establishing an optimized Gal4-activator (KalTA4). We provide quantitative data for KalTA4-mediated transgene activation in dependence of UAS copy numbers to allow for studying dosage effects of transgene expression. Employing a Tol2 transposon-mediated KalTA4 enhancer trap screen biased for central nervous system expression, we present a collection of self-reporting red fluorescent KalTA4 activator strains. These strains reliably transactivate UAS-dependent transgenes and can be rendered homozygous. Furthermore, we have characterized the transactivation kinetics of tissue-specific KalTA4 activation, which led to the development of a self-maintaining effector strain “Kaloop.” This strain relates transient KalTA4 expression during embryogenesis via a KalTA4-mediated autoregulatory mechanism to live adult structures. We demonstrate its use by showing that the secondary octaval nucleus in the adult hindbrain is likely derived from egr2b-expressing cells in rhombomere 5 during stages of early embryogenesis. These data demonstrate prolonged and maintained expression by Kalooping, a technique that can be used for permanent spatiotemporal genetic fate mapping and targeted transgene expression in zebrafish.


Mechanisms of Development | 1998

Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye

Felix Loosli; Reinhard W. Köster; Matthias Carl; Annette Krone; Joachim Wittbrodt

The conserved transcription factor Pax6 is essential for eye development in Drosophila and mammals (Hill, R.E., Favor, J., Hogan, B.L.M., Ton, C.C.T., Saunders, G.F., Hanson, I.M., Prosser, J., Jordan, T., Hastie, N.D., van Heyningen, V., 1991. Mouse small eye results from mutations in a paired-like homeobox containing gene. Nature 354, 522-525; Ton, C., Hirvonen, H., Miwa, H., Weil, M., Monaghan, P., Jordan, T., van Heyningen, V., Hastie, N., Meijers-Heijboer, H., Drechsler, M., Royer-Pokora, B., Collins, F., Swaroop, A., Strong, L.C., Saunders, G.F., 1991. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 6, 1059-1074; Matsuo, T., Osumi-Yamashita, N., Noji, S., Ohuchi, H., Koyama, E., Myokai, F., Matsuo, N., Toniguchi, S., Dari, H., Jseki, S., Ninomiya, Y., Fujiwara, M., Watanabe, T., Eto, K., 1993. A mutation at the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nature genet. 3, 299-304; Quiring, R., Walldorf, U., Kloter, U., Gehring, W.J., 1994. Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science 265, 785-789). These findings led to the hypothesis that additional genes involved in invertebrate and vertebrate eye development are structurally and functionally conserved (Halder, G., Callaerts, P., Gehring, W.J., 1995. New perspectives on eye evolution. Curr. Opin. Gen. Dev. 5, 602-609; Quiring, R., Walldorf, U., Kloter, U., Gehring, W.J., 1994. Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science 265, 785-789). Candidates for such conserved genes are the Drosophila homeobox gene sine oculis (Cheyette, B.N.R., Green, P.J., Martin, K., Garren, H., Hartenstein, V., Zipursky, S.L., 1994. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron l2, 977-996) and its murine homologue Six3 (Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., Gruss, P., 1995. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-4055). sine oculis (so) is essential for the development of the larval and adult visual system (Cheyette, B.N.R., Green, P.J., Martin, K., Garren, H., Hartenstein, V., Zipursky, S.L., 1994. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron l2, 977-996). Six3 is expressed in the anterior neural plate and optic vesicles, lens, olfactory placodes and ventral forebrain (Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., Gruss, P., 1995. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-4055). Overexpression of mouse Six3 gene in medaka fish embryos (Orvzias latipes) results in the formation of an ectopic lens, indicating that Six3 activity can trigger the genetic pathway leading to lens formation (Oliver, G., Loosli, F., Koster, R., Wittbrodt, J., Gruss, P., 1996. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev. 60, 233-239). We isolated the medaka Six3 homologue and analyzed its expression pattern in the medaka embryo. It is expressed initially in the anterior embryonic shield and later in the developing eye and prosencephalon. The early localized expression of Six3 suggests a role in the regionalization of the rostral head.


Current Biology | 2001

Direct imaging of in vivo neuronal migration in the developing cerebellum

Reinhard W. Köster; Scott E. Fraser

The upper rhombic lip (URL), a germinal zone in the dorsoanterior hindbrain, has long been known to be a source for neurons of the vertebrate cerebellum. It was thought to give rise to dorsally migrating granule cell precursors (Figure 1e); however, recent fate mapping studies have questioned the exclusive contributions of the URL to granule cells. By taking advantage of the clarity of the zebrafish embryo during the stages of brain morphogenesis, we have followed the fate of neuronal precursor cells generated within the upper rhombic lip directly. Combining a novel GFP labeling strategy with in vivo time-lapse imaging, we find, contrary to the former view, that most URL-descendants migrate anterior toward the midhindbrain boundary (MHB) and then course ventrally along the MHB (Figure 1f). As the migrating neuronal precursors reach the MHB, they form ventrally extending projections, likely axons, and continue ventral migration to settle outside of the cerebellum, in the region of the ventral brainstem. Thus, we define a new pathway for URL-derived neuronal precursor cells consistent with the recent fate maps. In addition, our results strongly suggest that the MHB plays a crucial role, not only in induction and patterning of the cerebellar anlage, but also in organizing its later morphogenesis by influencing cell migration.


Brain | 2009

Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio)

Laura Flinn; Heather Mortiboys; Katrin Volkmann; Reinhard W. Köster; Phillip W. Ingham; Oliver Bandmann

Currently, only symptomatic therapy is available for Parkinsons disease. The zebrafish is a vertebrate animal model ideally suited for high throughput compound screening to identify disease-modifying compounds for Parkinsons disease. We have developed a zebrafish model for Parkin deficiency, the most commonly mutated gene in early onset Parkinsons disease. The zebrafish Parkin protein is 62% identical to its human counterpart with 78% identity in functionally relevant regions. The parkin gene is expressed throughout zebrafish development and ubiquitously in adult zebrafish tissue. Abrogation of Parkin activity leads to a significant decrease in the number of ascending dopaminergic neurons in the posterior tuberculum (homologous to the substantia nigra in humans), an effect enhanced by exposure to MPP+. Both light microscopic analysis and staining with the pan-neuronal marker HuC confirmed that this loss of dopaminergic neurons is not due to general impairment of brain development. Neither serotonergic nor motor neurons were affected, further emphasizing that the effect of parkin knockdown appears to be specific for dopaminergic neurons. Notably, parkin knockdown zebrafish embryos also develop specific reduction in the activity of the mitochondrial respiratory chain complex I, making this the first vertebrate model to share both important pathogenic mechanisms (i.e. complex I deficiency) and the pathological hallmark (i.e. dopaminergic cell loss) with human parkin-mutant patients. The zebrafish model is thus ideally suited for future drug screens and other studies investigating the functional mechanisms underlying neuronal cell death in early onset Parkinsons Disease. Additional electron microscopy studies revealed electron dense material in the t-tubules within the muscle tissue of parkin knockdown zebrafish. T-tubules are rich in L-type calcium channels, therefore our work might also provide a tentative link between genetically determined early onset Parkinsons disease and recent studies attributing an important role to these L-type calcium channels in late onset sporadic Parkinsons disease.


Developmental Dynamics | 2005

Quantum Dots Are Powerful Multipurpose Vital Labeling Agents in Zebrafish Embryos

Sandra Rieger; Rajan P. Kulkarni; Dan Darcy; Scott E. Fraser; Reinhard W. Köster

Recently, inorganic fluorescent contrast agents composed of semiconductor materials have been introduced to biological imaging approaches. These so‐called quantum dots provide unique and promising properties unreached by organic fluorophores, but their use as contrast agents within live organisms has been limited, probably due in part to concerns about their in vivo tolerance. Using transparent zebrafish embryos, we challenged quantum dots with a series of intravital imaging problems. We show that quantum dots provide a high fluorescent yield within targeted tissues, possess immense photostability, can be targeted to specific subcellular compartments, remain within targeted cells as lineage tracers, are easily separable from conventional organic fluorescent dyes, and are fixable, allowing them to be used in combination with immunohistochemistry after live recordings. Thus, quantum dots combine the specific advantages of different organic fluorescent contrast agents and promise to become the first fluorophore feasible for long‐lasting intravital time‐lapse studies. Finally, we show by colabeling blood vessels of the vasculature and major axon tracts of the nervous system that, for establishing these networks, the same guidance cues might be used in some body parts, whereas in others, both networks appear to develop independently from one another. Thus, the bright fluorescence of quantum dots will help to unravel many open questions in the fields of embryology, cell biology, as well as phenotyping and disease diagnosis. Developmental Dynamics 234:670–681, 2005.


Mechanisms of Development | 2000

A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes)

Felix Loosli; Reinhard W. Köster; Matthias Carl; Ronald P. Kühnlein; Thorsten Henrich; Manuela Mücke; Annette Krone; Joachim Wittbrodt

In a pilot screen, we assayed the efficiency of ethylnitrosourea (ENU) as a chemical mutagen to induce mutations that lead to early embryonic and larval lethal phenotypes in the Japanese medaka fish, Oryzias latipes. ENU acts as a very efficient mutagen inducing mutations at high rates in germ cells. Three repeated treatments of male fish in 3 mM ENU for 1 h results in locus specific mutation rates of 1.1-1.95 x10(-3). Mutagenized males were outcrossed to wild type females and the F1 offspring was used to establish F2 families. F2 siblings were intercrossed and the F3 progeny was scored 24, 48 and 72 h after fertilization for morphological alterations affecting eye development. The presented mutant phenotypes were identified using morphological criteria and occur during early developmental stages of medaka. They are stably inherited in a Mendelian fashion. The high efficiency of ENU to induce mutations in this pilot screen indicates that chemical mutagenesis and screening for morphologically visible phenotypes in medaka fish allows the genetic analysis of specific aspects of vertebrate development complementing the screens performed in other vertebrate model systems.


The EMBO Journal | 2012

IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation

Tripat Kaur Oberoi; Taner Dogan; Jennifer C. Hocking; Rolf-Peter Scholz; Juliane Mooz; Carrie L Anderson; Christiaan Karreman; Dagmar Meyer zu Heringdorf; Gudula Schmidt; Mika Ruonala; Kazuhiko Namikawa; Gregory S. Harms; Alejandro Carpy; Boris Macek; Reinhard W. Köster; Krishnaraj Rajalingam

Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well‐studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X‐linked IAP (XIAP) and cellular IAP1 (c‐IAP1) directly bind to Rac1 in a nucleotide‐independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c‐IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1‐dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.

Collaboration


Dive into the Reinhard W. Köster's collaboration.

Top Co-Authors

Avatar

Martin Distel

University of California

View shared research outputs
Top Co-Authors

Avatar

Scott E. Fraser

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer C. Hocking

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Rieger

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Loosli

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Giulio Russo

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marina Mione

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge