Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rekha Vij is active.

Publication


Featured researches published by Rekha Vij.


The Lancet Respiratory Medicine | 2013

Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study.

Imre Noth; Yingze Zhang; Shwu Fan Ma; Carlos Flores; Mathew Barber; Yong Huang; Steven M. Broderick; Michael S. Wade; Pirro G. Hysi; Joseph Scuirba; Thomas J. Richards; Brenda Juan-Guardela; Rekha Vij; MeiLan K. Han; Fernando J. Martinez; Karl Kossen; Scott D. Seiwert; Jason D. Christie; Dan L. Nicolae; Naftali Kaminski; Joe G. N. Garcia

BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating disease that probably involves several genetic loci. Several rare genetic variants and one common single nucleotide polymorphism (SNP) of MUC5B have been associated with the disease. Our aim was to identify additional common variants associated with susceptibility and ultimately mortality in IPF. METHODS First, we did a three-stage genome-wide association study (GWAS): stage one was a discovery GWAS; and stages two and three were independent case-control studies. DNA samples from European-American patients with IPF meeting standard criteria were obtained from several US centres for each stage. Data for European-American control individuals for stage one were gathered from the database of genotypes and phenotypes; additional control individuals were recruited at the University of Pittsburgh to increase the number. For controls in stages two and three, we gathered data for additional sex-matched European-American control individuals who had been recruited in another study. DNA samples from patients and from control individuals were genotyped to identify SNPs associated with IPF. SNPs identified in stage one were carried forward to stage two, and those that achieved genome-wide significance (p<5 × 10(-8)) in a meta-analysis were carried forward to stage three. Three case series with follow-up data were selected from stages one and two of the GWAS using samples with follow-up data. Mortality analyses were done in these case series to assess the SNPs associated with IPF that had achieved genome-wide significance in the meta-analysis of stages one and two. Finally, we obtained gene-expression profiling data for lungs of patients with IPF from the Lung Genomics Research Consortium and analysed correlation with SNP genotypes. FINDINGS In stage one of the GWAS (542 patients with IPF, 542 control individuals matched one-by-one to cases by genetic ancestry estimates), we identified 20 loci. Six SNPs reached genome-wide significance in stage two (544 patients, 687 control individuals): three TOLLIP SNPs (rs111521887, rs5743894, rs5743890) and one MUC5B SNP (rs35705950) at 11p15.5; one MDGA2 SNP (rs7144383) at 14q21.3; and one SPPL2C SNP (rs17690703) at 17q21.31. Stage three (324 patients, 702 control individuals) confirmed the associations for all these SNPs, except for rs7144383. Linkage disequilibrium between the MUC5B SNP (rs35705950) and TOLLIP SNPs (rs111521887 [r(2)=0·07], rs5743894 [r(2)=0·16], and rs5743890 [r(2)=0·01]) was low. 683 patients from the GWAS were included in the mortality analysis. Individuals who developed IPF despite having the protective TOLLIP minor allele of rs5743890 carried an increased mortality risk (meta-analysis with fixed-effect model: hazard ratio 1·72 [95% CI 1·24-2·38]; p=0·0012). TOLLIP expression was decreased by 20% in individuals carrying the minor allele of rs5743890 (p=0·097), 40% in those with the minor allele of rs111521887 (p=3·0 × 10(-4)), and 50% in those with the minor allele of rs5743894 (p=2·93 × 10(-5)) compared with homozygous carriers of common alleles for these SNPs. INTERPRETATION Novel variants in TOLLIP and SPPL2C are associated with IPF susceptibility. One novel variant of TOLLIP, rs5743890, is also associated with mortality. These associations and the reduced expression of TOLLIP in patients with IPF who carry TOLLIP SNPs emphasise the importance of this gene in the disease. FUNDING National Institutes of Health; National Heart, Lung, and Blood Institute; Pulmonary Fibrosis Foundation; Coalition for Pulmonary Fibrosis; and Instituto de Salud Carlos III.


Chest | 2011

Autoimmune-Featured Interstitial Lung Disease: A Distinct Entity

Rekha Vij; Imre Noth; Mary E. Strek

BACKGROUND Patients with interstitial lung disease (ILD) may have features of an autoimmune disorder that do not meet the diagnostic criteria for connective tissue diseases. We determined the prevalence and characteristics of autoimmune-featured ILD (AIF-ILD) and compared these with those of idiopathic pulmonary fibrosis (IPF) and known connective tissue disease-related ILD (CTD-ILD). METHODS Patients with ILD who did not meet the criteria for a connective tissue disease were defined as having AIF-ILD if they had a sign or symptom suggestive of a connective tissue disease and a serologic test reflective of an autoimmune process. Clinical characteristics, high-resolution CT images, and lung biopsy specimens were analyzed and compared with those of patients with IPF and CTD-ILD. Survival was evaluated using a Kaplan-Meier curve. RESULTS Two hundred subjects completed the questionnaire and serologic testing. AIF-ILD was identified in 32%, IPF in 29%, and CTD-ILD in 19%. Gender, age, and race differed among groups (P < .01). Sixty-two percent of patients with AIF-ILD had a typical usual interstitial pneumonia (UIP) pattern on CT images. In 31 patients with AIF-ILD, lung biopsy specimens showed UIP in 81% and nonspecific interstitial pneumonia in 6%. Patients with AIF-ILD and IPF had similar survival, worse than those with CTD-ILD (P < .01). Antinuclear antibody (ANA) titers ≥ 1:1280 were associated with improved survival in patients with AIF-ILD (P = .02). CONCLUSIONS Systematic evaluation of symptoms and serologic tests in ILD can identify AIF-ILD. A UIP pattern on CT images and histopathology is common in AIF-ILD. Although survival for patients with AIF-ILD is poor, ANA titers ≥ 1:1280 are associated with improved survival.


Science Translational Medicine | 2013

Peripheral Blood Mononuclear Cell Gene Expression Profiles Predict Poor Outcome in Idiopathic Pulmonary Fibrosis

Jose D. Herazo-Maya; Imre Noth; Steven R. Duncan; SungHwan Kim; Shwu Fan Ma; George C. Tseng; Eleanor Feingold; Brenda Juan-Guardela; Thomas J. Richards; Yves A. Lussier; Yong Huang; Rekha Vij; Kathleen O. Lindell; Jianmin Xue; Kevin F. Gibson; Steven D. Shapiro; Joe G. N. Garcia; Naftali Kaminski

Genome-scale transcriptomic profiling of peripheral blood mononuclear cells from patients with idiopathic pulmonary fibrosis reveals that decreased expression of CD28, ICOS, LCK, and ITK predicts mortality. Gene Signature Predicts Mortality Idiopathic pulmonary fibrosis (IPF) is a fatal disease that progresses at different rates. Although no therapies exist, giving patients a more accurate prognosis is highly desirable. To this end, Herazo-Maya and colleagues searched the genomes of cells circulating in the blood of IPF patients and found that four genes may be indicators of poor outcome. Patients were recruited into discovery or replication cohorts from two different medical centers in the United States and followed until death or completion of the study. In both groups, genetic material was isolated from the patients’ peripheral blood mononuclear cells (PBMCs) and analyzed for increased or decreased expression. These gene expression profiles were then correlated with transplant-free survival (TFS). In the discovery cohort, Herazo-Maya et al. found that underexpression of the genes CD28, ICOS, LCK, and ITK was associated with decreased TFS. These findings were confirmed in the replication cohort. This “genomic model” incorporating the four genes was combined with the clinical outputs age, gender, and forced vital capacity to create an even stronger predictor of poor outcome. The authors suggest that the decreased expression of these genes might be linked to lower percentages of CD4+CD28+ T cells in the PBMC population, which could contribute to a mechanistic understanding of why some IPF patients progress differently than others. The findings of this study have the potential to affect the care of patients with IPF as well as the understanding of disease mechanism. However, the combined genomic and clinical predictor will need to be validated in additional independent cohorts before translation. We aimed to identify peripheral blood mononuclear cell (PBMC) gene expression profiles predictive of poor outcomes in idiopathic pulmonary fibrosis (IPF) by performing microarray experiments of PBMCs in discovery and replication cohorts of IPF patients. Microarray analyses identified 52 genes associated with transplant-free survival (TFS) in the discovery cohort. Clustering the microarray samples of the replication cohort using the 52-gene outcome-predictive signature distinguished two patient groups with significant differences in TFS. We studied the pathways associated with TFS in each independent microarray cohort and identified decreased expression of “The costimulatory signal during T cell activation” Biocarta pathway and, in particular, the genes CD28, ICOS, LCK, and ITK, results confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). A proportional hazards model, including the qRT-PCR expression of CD28, ICOS, LCK, and ITK along with patient’s age, gender, and percent predicted forced vital capacity (FVC%), demonstrated an area under the receiver operating characteristic curve of 78.5% at 2.4 months for death and lung transplant prediction in the replication cohort. To evaluate the potential cellular source of CD28, ICOS, LCK, and ITK expression, we analyzed and found significant correlation of these genes with the PBMC percentage of CD4+CD28+ T cells in the replication cohort. Our results suggest that CD28, ICOS, LCK, and ITK are potential outcome biomarkers in IPF and should be further evaluated for patient prioritization for lung transplantation and stratification in drug studies.


Chest | 2013

Diagnosis and Treatment of Connective Tissue Disease-Associated Interstitial Lung Disease

Rekha Vij; Mary E. Strek

Interstitial lung disease (ILD) is one of the most serious pulmonary complications associated with connective tissue diseases (CTDs), resulting in significant morbidity and mortality. Although the various CTDs associated with ILD often are considered together because of their shared autoimmune nature, there are substantial differences in the clinical presentations and management of ILD in each specific CTD. This heterogeneity and the cross-disciplinary nature of care have complicated the conduct of prospective multicenter treatment trials and hindered our understanding of the development of ILD in patients with CTD. In this update, we present new information regarding the diagnosis and treatment of patients with ILD secondary to systemic sclerosis, rheumatoid arthritis, dermatomyositis and polymyositis, and Sjögren syndrome. We review information on risk factors for the development of ILD in the setting of CTD. Diagnostic criteria for CTD are presented as well as elements of the clinical evaluation that increase suspicion for CTD-ILD. We review the use of medications in the treatment of CTD-ILD. Although a large, randomized study has examined the impact of immunosuppressive therapy for ILD secondary to systemic sclerosis, additional studies are needed to determine optimal treatment strategies for each distinct form of CTD-ILD. Finally, we review new information regarding the subgroup of patients with ILD who meet some, but not all, diagnostic criteria for a CTD. A careful and systematic approach to diagnosis in patients with ILD may reveal an unrecognized CTD or evidence of autoimmunity in those previously believed to have idiopathic ILD.


American Journal of Respiratory and Critical Care Medicine | 2015

TOLLIP, MUC5B, and the Response to N-Acetylcysteine among Individuals with Idiopathic Pulmonary Fibrosis

Justin M. Oldham; Shwu Fan Ma; Fernando J. Martinez; Kevin J. Anstrom; Ganesh Raghu; David A. Schwartz; Eleanor Valenzi; Leah J. Witt; Cathryn Lee; Rekha Vij; Yong Huang; Mary E. Strek; Imre Noth

RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. The genes TOLLIP and MUC5B play important roles in lung host defense, which is an immune process influenced by oxidative signaling. Whether polymorphisms in TOLLIP and MUC5B modify the effect of immunosuppressive and antioxidant therapy in individuals with IPF is unknown. OBJECTIVES To determine whether single-nucleotide polymorphisms (SNPs) within TOLLIP and MUC5B modify the effect of interventions in subjects participating in the Evaluating the Effectiveness of Prednisone, Azathioprine, and N-Acetylcysteine in Patients with Idiopathic Pulmonary Fibrosis (PANTHER-IPF) clinical trial. METHODS SNPs within TOLLIP (rs5743890/rs5743894/rs5743854/rs3750920) and MUC5B (rs35705950) were genotyped. Interaction modeling was conducted with multivariable Cox regression followed by genotype-stratified survival analysis using a composite endpoint of death, transplantation, hospitalization, or a decline of ≥ 10% in FVC. MEASUREMENTS AND MAIN RESULTS Significant interaction was observed between N-acetylcysteine (NAC) therapy and rs3750920 within TOLLIP (P interaction = 0.001). After stratifying by rs3750920 genotype, NAC therapy was associated with a significant reduction in composite endpoint risk (hazard ratio, 0.14; 95% confidence interval, 0.02-0.83; P = 0.03) in those with a TT genotype, but a nonsignificant increase in composite endpoint risk (hazard ratio, 3.23; 95% confidence interval, 0.79-13.16; P = 0.10) was seen in those with a CC genotype. These findings were then replicated in an independent IPF cohort. CONCLUSIONS NAC may be an efficacious therapy for individuals with IPF with an rs3750920 (TOLLIP) TT genotype, but it was associated with a trend toward harm in those with a CC genotype. A genotype-stratified prospective clinical trial should be conducted before any recommendation regarding the use of off-label NAC to treat IPF.


The Lancet Respiratory Medicine | 2014

Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation

Bridget D. Stuart; Joyce S. Lee; Julia Kozlitina; Imre Noth; Megan S. Devine; Craig S. Glazer; Fernando Torres; Vaidehi Kaza; Carlos Girod; Kirk D. Jones; Brett M. Elicker; Shwu Fan Ma; Rekha Vij; Harold R. Collard; Paul J. Wolters; Christine Kim Garcia

BACKGROUND Short telomere lengths are found in a subset of patients with idiopathic pulmonary fibrosis, but their clinical significance is unknown. Our aim was to investigate whether patients with various blood leucocyte telomere lengths had different overall survival. METHODS In this observational cohort study, we enrolled patients with interstitial lung disease from Dallas, TX (primary cohort), and from Chicago, IL, and San Francisco, CA (replication cohorts). We obtained genomic DNA samples from unrelated healthy controls in Dallas, TX, and spouses of patients were also enrolled as an independent control group. Telomere lengths were measured in genomic DNA samples isolated from peripheral blood obtained at the time of the initial enrolment assessment. The primary endpoint was transplant-free survival (ie, time to death or lung transplantation) in the Dallas cohort. Findings were validated in the two independent idiopathic pulmonary fibrosis cohorts (Chicago and San Francisco). FINDINGS 370 patients were enrolled into the Dallas cohort between June 17, 2003, and Aug 25, 2011. The 149 patients with idiopathic pulmonary fibrosis had shorter telomere lengths than did the 195 healthy controls (mean age-adjusted log-transformed ratio of telomere to single copy gene was -0.16 [SD 0.23] vs 0.00 [0.18]; p<0.0001); however, telomere lengths of the Dallas patients with idiopathic pulmonary fibrosis (1.33 [SD 0.25]) were similar to the 221 patients with other interstitial lung disease diagnoses (1.46 [0.24]) after adjusting for age, sex, and ethnicity (p=0.47). Telomere length was independently associated with transplant-free survival time for patients with idiopathic pulmonary fibrosis (HR 0.22 [95% CI 0.08-0.63]; p=0.0048), but not for patients with interstitial lung disease diagnoses other than idiopathic pulmonary fibrosis (HR 0.73 [0.16-3.41]; p=0.69). The association between telomere length and survival in patients with idiopathic pulmonary fibrosis was independent of age, sex, forced vital capacity, or diffusing capacity of carbon monoxide, and was replicated in the two independent idiopathic pulmonary fibrosis replication cohorts (Chicago cohort, HR 0.11 [0.03-0.39], p=0.00066; San Francisco cohort, HR 0.25 [0.07-0.87], p=0.029). INTERPRETATION Shorter leucocyte telomere lengths are associated with worse survival in idiopathic pulmonary fibrosis. Additional studies will be needed to establish clinically relevant thresholds for telomere length and how this biomarker might affect risk stratification of patients with idiopathic pulmonary fibrosis. FUNDING US National Heart, Lung, and Blood Institute, National Center for Advancing Translational Sciences, Harroun Family Foundation, and Nina Ireland Lung Disease Program.


Translational Research | 2012

Peripheral blood biomarkers in idiopathic pulmonary fibrosis.

Rekha Vij; Imre Noth

In this article, we review the evidence for peripheral blood biomarkers in idiopathic pulmonary fibrosis (IPF), a life-threatening fibrotic lung disease of unknown etiology. We focus on selected biomarkers present in peripheral blood, as they are easy to obtain, can be measured longitudinally, and have the greatest likelihood of achieving clinical utility. This article concentrates on biomarkers with mechanistic plausibility that may be directly involved in the development of IPF, including KL-6, surfactant proteins A and D, matrix metalloproteases (MMP) 1 and 7, CCL18, VEGF, YKL-40, osteopontin, circulating fibrocytes, and T cells. After reviewing the evidence base for each, we designate the biomarkers that may have utility as: (1) diagnostic biomarkers to distinguish IPF from other interstitial lung diseases, (2) prognostic biomarkers that are correlated with disease progression or mortality, or (3) biomarkers that can be used as tools for serial monitoring of disease severity. Although there are no validated biomarkers that are currently available, the need for surrogates of diagnosis, prognosis, and monitoring of disease course with emerging therapies is great.


European Respiratory Journal | 2016

Characterisation of patients with interstitial pneumonia with autoimmune features.

Justin M. Oldham; Ayodeji Adegunsoye; Eleanor Valenzi; Cathryn Lee; Leah J. Witt; Lena W. Chen; Aliya N. Husain; Steven M. Montner; Jonathan H. Chung; Cottin; Aryeh Fischer; Imre Noth; Rekha Vij; Mary E. Strek

Patients with interstitial lung disease (ILD) may have features of connective tissue disease (CTD), but lack findings diagnostic of a specific CTD. A recent European Respiratory Society/American Thoracic Society research statement proposed criteria for patients with interstitial pneumonia with autoimmune features (IPAF). We applied IPAF criteria to patients with idiopathic interstitial pneumonia and undifferentiated CTD-ILD (UCTD). We then characterised the clinical, serological and morphological features of the IPAF cohort, compared outcomes to other ILD cohorts and validated individual IPAF domains using survival as an endpoint. Of 422 patients, 144 met IPAF criteria. Mean age was 63.2 years with a slight female predominance. IPAF cohort survival was marginally better than patients with idiopathic pulmonary fibrosis, but worse than CTD-ILD. A non-usual interstitial pneumonia pattern was associated with improved survival, as was presence of the clinical domain. A modified IPAF cohort of those meeting the clinical domain and a radiographic or histological feature within the morphological domain displayed survival similar to those with CTD-ILD. IPAF is common among patients with idiopathic interstitial pneumonia and UCTD. Specific IPAF features can identify subgroups with differential survival. Further research is needed to replicate these findings and determine whether patients meeting IPAF criteria benefit from immunosuppressive therapy. IPAF is common among patients with IIP and has distinct subgroups that demonstrate differential survival http://ow.ly/Z0ShD


Chest | 2010

Pulmonary Complications of Hemoglobinopathies

Rekha Vij; Roberto F. Machado

Hemoglobinopathies are diseases caused by genetic mutations that result in abnormal, dysfunctional hemoglobin molecules or lower levels of normal hemoglobin molecules. The most common hemoglobinopathies are sickle cell disease (SCD) and the thalassemias. In SCD, an abnormal hemoglobin alters the erythrocyte, causing a chronic hemolytic anemia, which can lead to pulmonary parenchymal damage and impaired vascular function. Pulmonary complications of SCD include the acute chest syndrome (ACS), reactive airways disease, pulmonary hypertension (PH), and pulmonary fibrosis. Episodes of ACS and the development of PH both increase the risk of death in patients with SCD. Both α and β thalassemia are characterized by impaired production of hemoglobin subunits, and severity of disease varies widely. Although screening studies suggest that PH is a common complication for patients with thalassemia, its impact on survival is unknown. Understanding the pathogenesis, diagnostic options, and prevention and treatment strategies for such complications is critical for clinicians who care for these patients. In this review, we discuss the mechanisms and clinical presentation of pulmonary complications associated with hemoglobinopathies, with a focus on recent advances in pathogenesis and treatment.


American Journal of Respiratory and Critical Care Medicine | 2017

Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis

Yong Huang; Shwu Fan Ma; Milena S. Espindola; Rekha Vij; Justin M. Oldham; Gary B. Huffnagle; John R. Erb-Downward; Kevin R. Flaherty; Beth Moore; Eric S. White; Tong Zhou; Jianrong Li; Yves A. Lussier; MeiLan K. Han; Naftali Kaminski; Joe G. N. Garcia; Cory M. Hogaboam; Fernando J. Martinez; Imre Noth

&NA; Rationale: Differences in the lung microbial community influence idiopathic pulmonary fibrosis (IPF) progression. Whether the lung microbiome influences IPF host defense remains unknown. Objectives: To explore the host immune response and microbial interaction in IPF as they relate to progression‐free survival (PFS), fibroblast function, and leukocyte phenotypes. Methods: Paired microarray gene expression data derived from peripheral blood mononuclear cells as well as 16S ribosomal RNA sequencing data from bronchoalveolar lavage obtained as part of the COMET‐IPF (Correlating Outcomes with Biochemical Markers to Estimate Time‐Progression in Idiopathic Pulmonary Fibrosis) study were used to conduct association pathway analyses. The responsiveness of paired lung fibroblasts to Toll‐like receptor 9 (TLR9) stimulation by CpG‐oligodeoxynucleotide (CpG‐ODN) was integrated into microbiome‐gene expression association analyses for a subset of individuals. The relationship between associated pathways and circulating leukocyte phenotypes was explored by flow cytometry. Measurements and Main Results: Down‐regulation of immune response pathways, including nucleotide‐binding oligomerization domain (NOD)‐, Toll‐, and RIG1‐like receptor pathways, was associated with worse PFS. Ten of the 11 PFS‐associated pathways correlated with microbial diversity and individual genus, with species accumulation curve richness as a hub. Higher species accumulation curve richness was significantly associated with inhibition of NODs and TLRs, whereas increased abundance of Streptococcus correlated with increased NOD‐like receptor signaling. In a network analysis, expression of up‐regulated signaling pathways was strongly associated with decreased abundance of operational taxonomic unit 1341 (OTU1341; Prevotella) among individuals with fibroblasts responsive to CpG‐ODN stimulation. The expression of TLR signaling pathways was also linked to CpG‐ODN responsive fibroblasts, OTU1341 (Prevotella), and Shannon index of microbial diversity in a network analysis. Lymphocytes expressing C‐X‐C chemokine receptor 3 CD8 significantly correlated with OTU1348 (Staphylococcus). Conclusions: These findings suggest that host‐microbiome interactions influence PFS and fibroblast responsiveness.

Collaboration


Dive into the Rekha Vij's collaboration.

Top Co-Authors

Avatar

Imre Noth

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge