Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remo Sanges is active.

Publication


Featured researches published by Remo Sanges.


Human Molecular Genetics | 2009

Germline CDH1 deletions in hereditary diffuse gastric cancer families

Carla Oliveira; Janine Senz; Pardeep Kaurah; Hugo Pinheiro; Remo Sanges; Anne Haegert; Giovanni Corso; Jan Schouten; Rebecca C. Fitzgerald; Holger Vogelsang; Gisela Keller; Sarah Dwerryhouse; Donna Grimmer; Suet Feung Chin; Han Kwang Yang; Charles E. Jackson; Raquel Seruca; Franco Roviello; Elia Stupka; Carlos Caldas; David Huntsman

Germline CDH1 point or small frameshift mutations can be identified in 30–50% of hereditary diffuse gastric cancer (HDGC) families. We hypothesized that CDH1 genomic rearrangements would be found in HDGC and identified 160 families with either two gastric cancers in first-degree relatives and with at least one diffuse gastric cancer (DGC) diagnosed before age 50, or three or more DGC in close relatives diagnosed at any age. Sixty-seven carried germline CDH1 point or small frameshift mutations. We screened germline DNA from the 93 mutation negative probands for large genomic rearrangements by Multiplex Ligation-Dependent Probe Amplification. Potential deletions were validated by RT–PCR and breakpoints cloned using a combination of oligo-CGH-arrays and long-range-PCR. In-silico analysis of the CDH1 locus was used to determine a potential mechanism for these rearrangements. Six of 93 (6.5%) previously described mutation negative HDGC probands, from low GC incidence populations (UK and North America), carried genomic deletions (UK and North America). Two families carried an identical deletion spanning 193 593 bp, encompassing the full CDH3 sequence and CDH1 exons 1 and 2. Other deletions affecting exons 1, 2, 15 and/or 16 were identified. The statistically significant over-representation of Alus around breakpoints indicates it as a likely mechanism for these deletions. When all mutations and deletions are considered, the overall frequency of CDH1 alterations in HDGC is ∼46% (73/160). CDH1 large deletions occur in 4% of HDGC families by mechanisms involving mainly non-allelic homologous recombination in Alu repeat sequences. As the finding of pathogenic CDH1 mutations is useful for management of HDGC families, screening for deletions should be offered to at-risk families.


Genome Research | 2012

Identification of microRNA-regulated gene networks by expression analysis of target genes.

Vincenzo Alessandro Gennarino; Giovanni D'Angelo; Gopuraja Dharmalingam; Serena Fernandez; Giorgio Russolillo; Remo Sanges; Margherita Mutarelli; Vincenzo Belcastro; Andrea Ballabio; Pasquale Verde; Marco Sardiello; Sandro Banfi

MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs.


Journal of Clinical Investigation | 2004

Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions

Elena Quaglino; Simona Rolla; Manuela Iezzi; Michela Spadaro; Piero Musiani; Carla De Giovanni; Pier Luigi Lollini; Stefania Lanzardo; Guido Forni; Remo Sanges; Stefania Crispi; Pasquale De Luca; Raffaele A. Calogero; Federica Cavallo

While much experimental data shows that vaccination efficiently inhibits a subsequent challenge by a transplantable tumor, its ability to inhibit the progress of autochthonous preneoplastic lesions is virtually unknown. In this article, we show that a combined DNA and cell vaccine persistently inhibits such lesions in a murine HER-2/neu mammary carcinogenesis model. At 10 weeks of age, all of the ten mammary gland samples from HER-2/neu-transgenic mice displayed foci of hyperplasia that progressed to invasive tumors. Vaccination with plasmids coding for the transmembrane and extracellular domain of rat p185neu followed by a boost with rp185neu+ allogeneic cells secreting IFN-gamma kept 48% of mice tumor free. At 22 weeks, their mammary glands were indistinguishable from those of 10-week-old untreated mice. Furthermore, the transcription patterns of the two sets of glands coincided. Of the 12,000 genes analyzed, 17 were differentially expressed and related to the antibody response. The use of B cell knockout mice as well as the concordance of morphologic and gene expression data demonstrated that the Ab response is the main mechanism facilitating tumor growth arrest. This finding suggests that a new way can be found to secure the immunologic control of the progression of HER-2/neu preneoplastic lesions.


Oncogene | 2012

Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts

D. Perna; G. Fagà; Alessandro Verrecchia; M. M. Gorski; Iros Barozzi; V. Narang; J. Khng; K. C. Lim; Wing-Kin Sung; Remo Sanges; Elia Stupka; T. Oskarsson; Andreas Trumpp; Chia Lin Wei; Heiko Müller; Bruno Amati

The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes.


Nature | 2017

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

Thomas Mock; Robert Otillar; Jan Strauss; Mark McMullan; Pirita Paajanen; Jeremy Schmutz; Asaf Salamov; Remo Sanges; Andrew Toseland; Ben J. Ward; Andrew E. Allen; Christopher L. Dupont; Stephan Frickenhaus; Florian Maumus; Alaguraj Veluchamy; Taoyang Wu; Kerrie Barry; Angela Falciatore; Maria Immacolata Ferrante; Antonio Emidio Fortunato; Gernot Glöckner; Ansgar Gruber; Rachel Hipkin; Michael G. Janech; Peter G. Kroth; Florian Leese; Erika Lindquist; Barbara R. Lyon; Joel W. Martin; Christoph Mayer

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


The EMBO Journal | 2007

The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish

Marco Ferg; Remo Sanges; Jochen Gehrig; János Kiss; Matthias F. Bauer; Agnes Lovas; Mónika Szabó; Lixin Yang; Uwe Straehle; Michael J. Pankratz; Ferenc Olasz; Elia Stupka; Ferenc Müller

Early steps of embryo development are directed by maternal gene products and trace levels of zygotic gene activity in vertebrates. A major activation of zygotic transcription occurs together with degradation of maternal mRNAs during the midblastula transition in several vertebrate systems. How these processes are regulated in preparation for the onset of differentiation in the vertebrate embryo is mostly unknown. Here, we studied the function of TATA‐binding protein (TBP) by knock down and DNA microarray analysis of gene expression in early embryo development. We show that a subset of polymerase II‐transcribed genes with ontogenic stage‐dependent regulation requires TBP for their zygotic activation. TBP is also required for limiting the activation of genes during development. We reveal that TBP plays an important role in the degradation of a specific subset of maternal mRNAs during late blastulation/early gastrulation, which involves targets of the miR‐430 pathway. Hence, TBP acts as a specific regulator of the key processes underlying the transition from maternal to zygotic regulation of embryogenesis. These results implicate core promoter recognition as an additional level of differential gene regulation during development.


Genome Biology | 2006

Shuffling of cis-regulatory elements is a pervasive feature of the vertebrate lineage

Remo Sanges; Éva Kalmár; Pamela Claudiani; Maria D'Amato; Ferenc Müller; Elia Stupka

BackgroundAll vertebrates share a remarkable degree of similarity in their development as well as in the basic functions of their cells. Despite this, attempts at unearthing genome-wide regulatory elements conserved throughout the vertebrate lineage using BLAST-like approaches have thus far detected noncoding conservation in only a few hundred genes, mostly associated with regulation of transcription and development.ResultsWe used a unique combination of tools to obtain regional global-local alignments of orthologous loci. This approach takes into account shuffling of regulatory regions that are likely to occur over evolutionary distances greater than those separating mammalian genomes. This approach revealed one order of magnitude more vertebrate conserved elements than was previously reported in over 2,000 genes, including a high number of genes found in the membrane and extracellular regions. Our analysis revealed that 72% of the elements identified have undergone shuffling. We tested the ability of the elements identified to enhance transcription in zebrafish embryos and compared their activity with a set of control fragments. We found that more than 80% of the elements tested were able to enhance transcription significantly, prevalently in a tissue-restricted manner corresponding to the expression domain of the neighboring gene.ConclusionOur work elucidates the importance of shuffling in the detection of cis-regulatory elements. It also elucidates how similarities across the vertebrate lineage, which go well beyond development, can be explained not only within the realm of coding genes but also in that of the sequences that ultimately govern their expression.


Molecular Ecology | 2014

Synechococcus: 3 billion years of global dominance

Petr Dvořák; Dale A. Casamatta; Aloisie Poulíčková; Petr Hašler; Vladan Ondřej; Remo Sanges

Cyanobacteria are among the most important primary producers on the Earth. However, the evolutionary forces driving cyanobacterial species diversity remain largely enigmatic due to both their distinction from macro‐organisms and an undersampling of sequenced genomes. Thus, we present a new genome of a Synechococcus‐like cyanobacterium from a novel evolutionary lineage. Further, we analyse all existing 16S rRNA sequences and genomes of Synechococcus‐like cyanobacteria. Chronograms showed extremely polyphyletic relationships in Synechococcus, which has not been observed in any other cyanobacteria. Moreover, most Synechococcus lineages bifurcated after the Great Oxidation Event, including the most abundant marine picoplankton lineage. Quantification of horizontal gene transfer among 70 cyanobacterial genomes revealed significant differences among studied genomes. Horizontal gene transfer levels were not correlated with ecology, genome size or phenotype, but were correlated with the age of divergence. All findings were synthetized into a novel model of cyanobacterial evolution, characterized by serial convergence of the features, that is multicellularity and ecology.


Human Mutation | 2011

Mutant SOD1 and mitochondrial damage alter expression and splicing of genes controlling neuritogenesis in models of neurodegeneration

Silvia C. Lenzken; Valentina Romeo; Francesca Zolezzi; Francesca Cordero; Giuseppe Lamorte; Davide Bonanno; Donatella Biancolini; Mauro Cozzolino; Maria Grazia Pesaresi; Alessia Maracchioni; Remo Sanges; Tilmann Achsel; Maria Teresa Carrì; Raffaele Calogero; Silvia M. L. Barabino

Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders including Parkinson, Alzheimer, and Amyotrophic Lateral Sclerosis (ALS). In addition, aberrant mRNA splicing has been documented in neurodegeneration. To characterize the cellular response to mitochondrial perturbations at the level of gene expression and alternative pre‐mRNA splicing we used splicing‐sensitive microarrays to profile human neuroblastoma SH‐SY5Y cells treated with paraquat, a neurotoxic herbicide that induces the formation of reactive oxygen species and causes mitochondrial damage in animal models, and SH‐SY5Y cells stably expressing the mutant G93A‐SOD1 protein, one of the genetic causes of ALS. In both models we identified a common set of genes whose expression and alternative splicing are deregulated. Pathway analysis of the deregulated genes revealed enrichment in genes involved in neuritogenesis, axon growth and guidance, and synaptogenesis. Alterations in transcription and pre‐mRNA splicing of candidate genes were confirmed experimentally in the cell line models as well as in brain and spinal cord of transgenic mice carrying the G93A‐SOD1 mutation. Our findings expand the realm of the pathways implicated in neurodegeneration and suggest that alterations of axonal function may descend directly from mitochondrial damage. Hum Mutat 31:1–15, 2011.


BMC Genomics | 2010

Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements.

Danilo Licastro; Vincenzo Alessandro Gennarino; Francesca Petrera; Remo Sanges; Sandro Banfi; Elia Stupka

BackgroundUltraconserved elements (UCEs) are highly constrained elements of mammalian genomes, whose functional role has not been completely elucidated yet. Previous studies have shown that some of them act as enhancers in mouse, while some others are expressed in both normal and cancer-derived human tissues. Only one UCE element so far was shown to present these two functions concomitantly, as had been observed in other isolated instances of single, non ultraconserved enhancer elements.ResultsWe used a custom microarray to assess the levels of UCE transcription during mouse development and integrated these data with published microarray and next-generation sequencing datasets as well as with newly produced PCR validation experiments. We show that a large fraction of non-exonic UCEs is transcribed across all developmental stages examined from only one DNA strand. Although the nature of these transcripts remains a mistery, our meta-analysis of RNA-Seq datasets indicates that they are unlikely to be short RNAs and that some of them might encode nuclear transcripts. In the majority of cases this function overlaps with the already established enhancer function of these elements during mouse development. Utilizing several next-generation sequencing datasets, we were further able to show that the level of expression observed in non-exonic UCEs is significantly higher than in random regions of the genome and that this is also seen in other regions which act as enhancers.ConclusionOur data shows that the concurrent presence of enhancer and transcript function in non-exonic UCE elements is more widespread than previously shown. Moreover through our own experiments as well as the use of next-generation sequencing datasets, we were able to show that the RNAs encoded by non-exonic UCEs are likely to be long RNAs transcribed from only one DNA strand.

Collaboration


Dive into the Remo Sanges's collaboration.

Top Co-Authors

Avatar

Elia Stupka

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Musacchia

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Swaraj Basu

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Ferenc Müller

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Elena Amendola

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Gabriele Procaccini

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Marco Borra

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Marina Montresor

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Mario De Felice

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge