Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Borra is active.

Publication


Featured researches published by Marco Borra.


Neurogenetics | 2014

miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients

Bruna De Felice; Anna Annunziata; Giuseppe Fiorentino; Marco Borra; Elio Biffali; Cinzia Coppola; Roberto Cotrufo; Johannes Brettschneider; Maria Luisa Giordana; Tamas Dalmay; Guy Wheeler; Raffaella D’Alessandro

Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Ninety percent of ALS patients are sporadic cases (sALS) with no clear genetic linkage. Accumulating evidence indicates that various microRNAs (miRNAs), expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, microRNA dysregulation contributes to some mental disorders and neurodegeneration diseases. In our research, the expression of one selected miRNA, miR-338-3p, which previously we have found over-expressed in blood leukocytes, was studied in several different tissues from sALS patients. For the first time, we detected a specific microRNA disease-related upregulation, miR-338-3p, in blood leukocytes as well in cerebrospinal fluid, serum, and spinal cord from sALS patients. Besides, staining of in situ hybridization showed that the signals of miR-338-3p were localized in the grey matter of spinal cord tissues from sALS autopsied patients. We propose that miRNA profiles found in tissue samples from sALS patients can be relevant to understand sALS pathogenesis and lead to set up effective biomarkers for sALS early diagnosis.


PLOS ONE | 2011

Molecular Evidence of the Toxic Effects of Diatom Diets on Gene Expression Patterns in Copepods

Chiara Lauritano; Marco Borra; Ylenia Carotenuto; Elio Biffali; Antonio Miralto; Gabriele Procaccini; Adrianna Ianora

Background Diatoms are dominant photosynthetic organisms in the worlds oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods. Principal Findings Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi) is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins) compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis) which showed no changes in gene expression profiles. Conclusions Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450) were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species.


BMC Molecular Biology | 2009

Construction of an adult barnacle (Balanus amphitrite) cDNA library and selection of reference genes for quantitative RT-PCR studies

Tristano Bacchetti De Gregoris; Marco Borra; Elio Biffali; Thomas Bekel; J. Grant Burgess; Richard R. Kirby; Anthony S. Clare

BackgroundBalanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR) data obtained from different developmental stages of this animal.ResultsWe generated a cDNA library containing expressed sequence tags (ESTs) from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets) were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization.ConclusionThe collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies.


Journal of Phycology | 2002

PHYLOGENETIC POSITION OF CRUSTOMASTIX STIGMATICA SP. NOV. AND DOLICHOMASTIX TENUILEPIS IN RELATION TO THE MAMIELLALES (PRASINOPHYCEAE, CHLOROPHYTA)1

Adriana Zingone; Marco Borra; Christophe Brunet; Gandi Forlani; Wiebe H. C. F. Kooistra; Gabriele Procaccini

A new marine microalga from the Mediterranean Sea, Crustomastix stigmatica Zingone, is investigated by means of LM, SEM, TEM, and pigment and molecular analyses (nuclear‐encoded small subunit [SSU] rDNA and plastid‐encoded rbcL). Pigment and molecular information is also provided for the related species Dolichomastix tenuilepis Throndsen et Zingone. Crustomastix stigmatica has a bean‐shaped cell body 3–5 μm long and 1.5–2.8 μm wide, with two flagella four to five times the body length. The single chloroplast is pale yellow‐green, cup‐shaped, and lacks a pyrenoid. A small bright yellow stigma is located in the mid‐dorsal part of the cell under the chloroplast membrane. An additional accumulation of osmiophilic globules is at times seen in a chloroplast lobe. Cells lack flat scales, whereas three different types of hair‐like scales are present on the flagella. The main pigments of C. stigmatica are those typical of Mamiellales, though siphonein/siphonaxanthin replaces prasinoxanthin and uriolide is absent. The pigment pool of D. tenuilepis is more similar to that of Micromonas pusilla (Butcher) Manton et Parke and of other Mamiellales. The nuclear SSU rDNA phylogeny shows that the inclusion of C. stigmatica and D. tenuilepis in the Mamiellales retains monophyly for the order. The two species form a distinct clade, which is sister to a clade including all the other Mamiellales. Results of rbcL analyses failed to provide phylogenetic information at both the order and species level. No unique morphological or pigment characteristics circumscribe the mamiellalean clade as a whole nor its two daughter clades.


BMC Molecular Biology | 2009

Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris.

Maria Sirakov; Ilaria Zarrella; Marco Borra; Francesca Rizzo; Elio Biffali; Maria Ina Arnone; Graziano Fiorito

BackgroundQuantitative real-time polymerase chain reaction (RT-qPCR) is valuable for studying the molecular events underlying physiological and behavioral phenomena. Normalization of real-time PCR data is critical for a reliable mRNA quantification. Here we identify reference genes to be utilized in RT-qPCR experiments to normalize and monitor the expression of target genes in the brain of the cephalopod mollusc Octopus vulgaris, an invertebrate. Such an approach is novel for this taxon and of advantage in future experiments given the complexity of the behavioral repertoire of this species when compared with its relatively simple neural organization.ResultsWe chose 16S, and 18S rRNA, actB, EEF1A, tubA and ubi as candidate reference genes (housekeeping genes, HKG). The expression of 16S and 18S was highly variable and did not meet the requirements of candidate HKG. The expression of the other genes was almost stable and uniform among samples. We analyzed the expression of HKG into two different set of animals using tissues taken from the central nervous system (brain parts) and mantle (here considered as control tissue) by BestKeeper, geNorm and NormFinder. We found that HKG expressions differed considerably with respect to brain area and octopus samples in an HKG-specific manner. However, when the mantle is treated as control tissue and the entire central nervous system is considered, NormFinder revealed tubA and ubi as the most suitable HKG pair. These two genes were utilized to evaluate the relative expression of the genes FoxP, creb, dat and TH in O. vulgaris.ConclusionWe analyzed the expression profiles of some genes here identified for O. vulgaris by applying RT-qPCR analysis for the first time in cephalopods. We validated candidate reference genes and found the expression of ubi and tubA to be the most appropriate to evaluate the expression of target genes in the brain of different octopuses. Our results also underline the importance of choosing a proper normalization strategy when analyzing gene expression by qPCR taking into appropriate account the experimental setting and variability of the sample of animals (and tissues), thus providing a set of HGK which expression appears to be unaffected by the experimental factor(s).


American Journal of Botany | 2011

Microsatellite primers in the planktonic diatom Pseudo-nitzschia multistriata (Bacillariophyceae)

Sylvie V. M. Tesson; Marco Borra; Wiebe H. C. F. Kooistra; Gabriele Procaccini

PREMISE OF THE STUDY Seven microsatellite loci were characterized for the toxic diatom Pseudo-nitzschia multistriata Takano (Takano) to investigate intraspecific variability and estimate population genetic structure over blooms, seasons, and sexual and vegetative reproduction. METHODS AND RESULTS Selected microsatellites consisted of di- and trinucleotide repeats in the core region, and showed four to twelve alleles per locus in strains of P. multistriata collected in the Gulf of Naples (Italy). Primer pairs were species-specific since they positively amplified against conspecific strains from Portugal and Spain but failed to generate PCR products from the diatoms Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle and Leptocylindrus minimum Gran. CONCLUSIONS The seven selected microsatellite markers will be useful in studying population dynamics of Pseudo-nitzschia multistriata in space and time.


Molecular Biotechnology | 2016

A Rapid and Cheap Methodology for CRISPR/Cas9 Zebrafish Mutant Screening

Ylenia D’Agostino; Annamaria Locascio; Filomena Ristoratore; Paolo Sordino; Antonietta Spagnuolo; Marco Borra; Salvatore D’Aniello

The introduction of new genome editing tools such as ZFNs, TALENs and, more recently, the CRISPR/Cas9 system, has greatly expanded the ability to knock-out genes in different animal models, including zebrafish. However, time and costs required for the screening of a huge number of animals, aimed to identify first founder fishes (F0), and then carriers (F1) are still a bottleneck. Currently, high-resolution melting (HRM) analysis is the most efficient technology for large-scale InDels detection, but the very expensive equipment demanded for its application may represent a limitation for research laboratories. Here, we propose a rapid and cheap method for high-throughput genotyping that displays efficiency rate similar to the HRM. In fact, using a common ViiA™7 real-time PCR system and optimizing the parameters of the melting analysis, we demonstrated that it is possible to discriminate between the mutant and the wild type melting curves. Due to its simplicity, rapidity and cheapness, our method can be used as a preliminary one-step approach for massive screening, in order to restrict the scope at a limited number of embryos and to focus merely on them for the next sequencing step, necessary for the exact sequence identification of the induced mutation. Moreover, thanks to its versatility, this simple approach can be readily adapted to the detection of any kind of genome editing approach directed to genes or regulatory regions and can be applied to many other animal models.


Fish & Shellfish Immunology | 2013

Ontogenetic profile of innate immune related genes and their tissue-specific expression in brown trout, Salmo trutta (Linnaeus, 1758)

Stefano Cecchini; Mariateresa Paciolla; Elio Biffali; Marco Borra; Matilde Valeria Ursini; Maria Brigida Lioi

The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout.


Science of The Total Environment | 2016

A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II)

Milva Pepi; Marco Borra; Stella Tamburrino; Maria Saggiomo; Alfio Viola; Elio Biffali; Cecilia Balestra; Mario Sprovieri; Raffaella Casotti

A Pb-resistant bacterial strain (named hereinafter Pb15) has been isolated from highly polluted marine sediments at the Sarno River mouth, Italy, using an enrichment culture to which Pb(II) 0.48mmoll(-1) were added. 16S rRNA gene sequencing (Sanger) allowed assignment of the isolate to the genus Bacillus, with Bacillus pumilus as the closest species. The isolate is resistant to Pb(II) with a minimum inhibitory concentration (MIC) of 4.8mmoll(-1) and is also resistant to Cd(II) and Mn(II) with MIC of 2.22mmoll(-1) and 18.20mmoll(-1), respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that Pb inoculated in the growth medium is absorbed by the bacterial cells at removal efficiencies of 31.02% and 28.21% in the presence of 0.48mmoll(-1) or 1.20mmoll(-1) Pb(II), respectively. Strain Pb15 forms a brown and compact biofilm when grown in presence of Pb(II). Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) confirm that the biofilm contains Pb, suggesting an active biosorption of this metal by the bacterial cells, sequestering 14% of inoculated Pb as evidenced by microscopic analyses. Altogether, these observations support evidence that strain Pb15 has potentials for being used in bioremediation of its native polluted sediments, with engineering solutions to be found in order to eliminate the adsorbed Pb before replacement of sediments in situ.


BMC Genomics | 2008

SNPs and Hox gene mapping in Ciona intestinalis

Luigi Caputi; Marco Borra; Nikos Andreakis; Elio Biffali; Paolo Sordino

BackgroundThe tunicate Ciona intestinalis (Enterogona, Ascidiacea), a major model system for evolutionary and developmental genetics of chordates, harbours two cryptic species. To assess the degree of intra- and inter-specific genetic variability, we report the identification and analysis of C. intestinalis SNP (Single Nucleotide Polymorphism) markers. A SNP subset was used to determine the genetic distance between Hox-5 and -10 genes.ResultsDNA fragments were amplified from 12 regions of C. intestinalis sp. A. In total, 128 SNPs and 32 one bp indels have been identified within 8 Kb DNA. SNPs in coding regions cause 4 synonymous and 12 non-synonymous substitutions. The highest SNP frequency was detected in the Hox5 and Hox10 intragenic regions. In C. intestinalis, these two genes have lost their archetypal topology within the cluster, such that Hox10 is located between Hox4 and Hox5. A subset of the above primers was used to perform successful amplification in C. intestinalis sp. B. In this cryptic species, 62 SNPs were identified within 3614 bp: 41 in non-coding and 21 in coding regions. The genetic distance of the Hox-5 and -10 loci, computed combining a classical backcross approach with the application of SNP markers, was found to be 8.4 cM (Haldanes function). Based on the physical distance, 1 cM corresponds to 39.5 Kb. Linkage disequilibrium between the aforementioned loci was calculated in the backcross generation.ConclusionSNPs here described allow analysis and comparisons within and between C. intestinalis cryptic species. We provide the first reliable computation of genetic distance in this important model chordate. This latter result represents an important platform for future studies on Hox genes showing deviations from the archetypal topology.

Collaboration


Dive into the Marco Borra's collaboration.

Top Co-Authors

Avatar

Elio Biffali

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Bruna De Felice

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gabriele Procaccini

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Marco Guida

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Raffaella D’Alessandro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Remo Sanges

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Cecilia Balestra

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Fulvio Maffucci

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Raffaella Casotti

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Sandra Hochscheid

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge