Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ren-Chieh Lien is active.

Publication


Featured researches published by Ren-Chieh Lien.


Journal of Atmospheric and Oceanic Technology | 1995

Comparison of Turbulence Kinetic Energy Dissipation Rate Estimates from Two Ocean Microstructure Profilers

James N. Moum; Michael C. Gregg; Ren-Chieh Lien; M. E. Carr

Abstract Almost 1000 microstructure profiles from two separate groups on two separate ships using different instrumentation, signal processing, and calibration procedures were compared for a 3.5-day time period at 0°, 140°W and within 11 km of each other. Systematic bias in the estimates of ϵ is less than a factor of 2, which is within estimates of the cumulative uncertainties in the measurement of ϵ. Although there is no evidence for strong gradients in mean currents, water properties, or surface meteorology, occasional hourly averages of ϵ differ by several factors of 10. Both groups observed periods where ϵ estimates exceeded those of the other group by large factors. The authors believe that the primary reason for these large differences is natural variability, which appears to be greater in the meridional direction than in the zonal direction.


Nature | 2015

The formation and fate of internal waves in the South China Sea

Matthew H. Alford; Thomas Peacock; Jennifer A. MacKinnon; Jonathan D. Nash; Maarten C. Buijsman; Luca R. Centuroni; Shenn-Yu Chao; Ming-Huei Chang; David M. Farmer; Oliver B. Fringer; Ke-Hsien Fu; Patrick C. Gallacher; Hans C. Graber; Karl R. Helfrich; Steven M. Jachec; Christopher R. Jackson; Jody M. Klymak; Dong S. Ko; Sen Jan; T. M. Shaun Johnston; Sonya Legg; I-Huan Lee; Ren-Chieh Lien; Matthieu J. Mercier; James N. Moum; Ruth Musgrave; Jae-Hun Park; Andy Pickering; Robert Pinkel; Luc Rainville

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans’ most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.


Journal of Geophysical Research | 2001

Observations of turbulence in a tidal beam and across a coastal ridge

Ren-Chieh Lien; Michael C. Gregg

During a microstructure survey off California in Monterey Bay, we found a midwater beam of strong turbulence emanating from the shelf break along the ray path of the semidiurnal M2 internal tide. Within the 50-m-thick beam the turbulence kinetic energy dissipation rate e exceeded 10−6 W kg−1, and the diapycnal eddy diffusivity Kρ was >0.01 m2 s−1. The beam extended 4 km off the shelf break. Several factors suggest that this beam of strong turbulence resulted from the breaking of semidiurnal internal tides: the beam appeared to originate from the shelf break, which is a potential generation site for semidiurnal internal tides; the beam closely followed the ray path of the semidiurnal internal tide; the average e off the shelf break varied by a factor of 100 with a semidiurnal tidal periodicity; the isopycnal displacement confirmed the presence of semidiurnal internal tides. Processes associated with the breaking of internal tides are intermittent and sporadic. At the same location we also observed equally intense turbulence in a ∼100-m-thick layer of stratified water across the ridge of a sea fan. This layer of strong turbulence was separated from the bottom and was clearly not generated by bottom friction. Although less well resolved in time, the strong turbulence above the bottom seemed to vary with the semidiurnal tide and existed at the lee of the ridge, where the isopycnal surface dipped and rebounded in a pattern resembling that of internal hydraulic jumps. On the basis of the behavior of the density field, we believe that the deep mixing was most likely produced by the across-ridge current of internal tides. The breaking of internal tides at middepth, where the Richardson number is close to the critical value, is likely due to shear instability. The presence of the coastal ridge provides an alternative pathway for converting energy from internal tides to turbulence via internal hydraulics. Multiplying the average e in the midwater beam by the length of the global coastline gives 31 GW, only a small fraction of the estimated 360 GW dissipated globally by M2 internal tides. Our observations suggest that either most internal tides are generated away from shelf breaks or most internal tides generated at shelf breaks propagate away from their generation sites, rather than dissipate locally, and eventually contribute to pelagic mixing.


Journal of Physical Oceanography | 2010

Speed and Evolution of Nonlinear Internal Waves Transiting the South China Sea

Matthew H. Alford; Ren-Chieh Lien; Harper L. Simmons; Jody M. Klymak; S. R. Ramp; Yiing Jang Yang; David Tang; Ming-Huei Chang

Abstract In the South China Sea (SCS), 14 nonlinear internal waves are detected as they transit a synchronous array of 10 moorings spanning the waves’ generation site at Luzon Strait, through the deep basin, and onto the upper continental slope 560 km to the west. Their arrival time, speed, width, energy, amplitude, and number of trailing waves are monitored. Waves occur twice daily in a particular pattern where larger, narrower “A” waves alternate with wider, smaller “B” waves. Waves begin as broad internal tides close to Luzon Strait’s two ridges, steepening to O(3–10 km) wide in the deep basin and O(200–300 m) on the upper slope. Nearly all waves eventually develop wave trains, with larger–steeper waves developing them earlier and in greater numbers. The B waves in the deep basin begin at a mean speed of ≈5% greater than the linear mode-1 phase speed for semidiurnal internal waves (computed using climatological and in situ stratification). The A waves travel ≈5%–10% faster than B waves until they reach...


Journal of Physical Oceanography | 2011

The Breaking and Scattering of the Internal Tide on a Continental Slope

Jody M. Klymak; Matthew H. Alford; Robert Pinkel; Ren-Chieh Lien; Yung Jang Yang; Tswen Yung Tang

AbstractA strong internal tide is generated in the Luzon Strait that radiates westward to impact the continental shelf of the South China Sea. Mooring data in 1500-m depth on the continental slope show a fortnightly averaged incoming tidal flux of 12 kW m−1, and a mooring on a broad plateau on the slope finds a similar flux as an upper bound. Of this, 5.5 kW m−1 is in the diurnal tide and 3.5 kW m−1 is in the semidiurnal tide, with the remainder in higher-frequency motions. Turbulence dissipation may be as high as 3 kW m−1. Local generation is estimated from a linear model to be less than 1 kW m−1. The continental slope is supercritical with respect to the diurnal tide, implying that there may be significant back reflection into the basin. Comparing the low-mode energy of a horizontal standing wave at the mooring to the energy flux indicates that perhaps one-third of the incoming diurnal tidal energy is reflected. Conversely, the slope is subcritical with respect to the semidiurnal tide, and the observed ...


Journal of Geophysical Research | 1995

Turbulence variability at the equator in the central Pacific at the beginning of the 1991-1993 El Nino

Ren-Chieh Lien; Douglas R. Caldwell; Michael C. Gregg; James N. Moum

A 38-day, 5990-cast microstructure study on the equator performed during the onset of the 1991–1993 El Nino shows the effect on small-scale activity at 140°W of an equatorial Kelvin wave. By using two ships, data were taken continuously from November 4 to December 12, 1991, near the National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory mooring at O°N, 140°W. The ships occupied the station sequentially with a 3.5-day overlap for intercalibration. Variability in currents was observed on tidal periods, and periods of 4 days (presumably equatorially trapped internal gravity waves), 8 days (cause unknown), 20 days (tropical instability waves), and longer (Kelvin waves). Variation in water structure occurred most prominently on the timescale of Kelvin waves. The diurnal cycle typical of that location was observed: nocturnal deepening of the surface mixed layer was accompanied by a “deep cycle,” bursts of turbulence penetrating into the stratified region below the nighttime mixed layer. During the observational period, one Kelvin wave trough and one crest passed through the site. Changes accompanying the phase change in the Kelvin wave included a reversal of the near-surface current, a deepening of the thermocline, and a change of water mass. Changes in small-scale activity included a tenfold decrease of the thermal dissipation rate and a fourfold decrease of the rate of heat transport downward from the mixed layer. The nighttime mixed layer deepened from 30 to 60 m. The thickness of the stratified region in which nocturnal turbulence bursts occurred, the deep cycle region, thinned from 40 to 20 m because it was confined between the bottom of the nighttime mixed layer and the low-shear region near the core of the undercurrent. The decrease in downward heat flux observed at this passage of the downwelling Kelvin wave front could explain the rapid sea surface temperature (SST) increase seen at El Nino onsets. The magnitude of the change in vertical flux is similar to the magnitude of the change in horizontal advection. This process would produce a warmer SST much more quickly than could the advection of warm waters eastward.


Journal of the Acoustical Society of America | 2005

Prediction of underwater sound levels from rain and wind.

Barry Ma; Jeffrey A. Nystuen; Ren-Chieh Lien

Wind and rain generated ambient sound from the ocean surface represents the background baseline of ocean noise. Understanding these ambient sounds under different conditions will facilitate other scientific studies. For example, measurement of the processes producing the sound, assessment of sonar performance, and helping to understand the influence of anthropogenic generated noise on marine mammals. About 90 buoy-months of ocean ambient sound data have been collected using Acoustic Rain Gauges in different open-ocean locations in the Tropical Pacific Ocean. Distinct ambient sound spectra for various rainfall rates and wind speeds are identified through a series of discrimination processes. Five divisions of the sound spectra associated with different sound generating mechanisms can be predicted using wind speed and rainfall rate as input variables. The ambient sound data collected from the Intertropical Convergence Zone are used to construct the prediction algorithms, and are tested on the data from the Western Pacific Warm Pool. This physically based semi-empirical model predicts the ambient sound spectra (0.5-50 kHz) at rainfall rates from 2-200 mm/h and wind speeds from 2 to 14 m/s.


Physics of Fluids | 2002

The Kolmogorov constant for the Lagrangian velocity spectrum and structure function

Ren-Chieh Lien; Eric A. D’Asaro

The inertial subrange Kolmogorov constant for the Lagrangian velocity structure function C0 is related to the inertial subrange constant for the Lagrangian acceleration spectrum β by C0=πβ. However, Rλ must be greater than about 105 for the inertial subrange of the structure function to be sufficiently wide to accurately determine C0, while values of Rλ greater than 102 are sufficient to determine β. Taking these Rλ limitations into account, the only two known high-quality independent measurements of C0 are 5.5 and 6.4.


Journal of Physical Oceanography | 2000

The Wave–Turbulence Transition for Stratified Flows

Eric A. D’Asaro; Ren-Chieh Lien

Abstract Mixing in a stratified ocean is controlled by different physics, depending on the large-scale Richardson number. At high Richardson numbers, mixing is controlled by interactions between internal wave modes. At Richardson numbers of order 1, mixing is controlled by instabilities of the large-scale wave modes. A “wave–turbulence” (W–T) transition separates these two regimes. This paper investigates the W–T transition, using observed oceanic and atmospheric spectra and parameterizations. Viewed in terms of Lagrangian (intrinsic) frequency spectra, the transition occurs when the inertial subrange of turbulence, confined to frequencies greater than the buoyancy frequency N, reaches the level of the internal waves, confined to frequencies less than N. Viewed in terms of vertical wavenumber spectra, the W–T transition occurs when the bandwidth of internal waves becomes small. Both of these singularities occur when the typical internal wave velocity becomes comparable to the phase speed of the lowest int...


Journal of Physical Oceanography | 2000

Lagrangian Measurements of Waves and Turbulence in Stratified Flows

Eric A. D’Asaro; Ren-Chieh Lien

Abstract Stratified flows are often a mixture of waves and turbulence. Here, Lagrangian frequency is used to distinguish these two types of motion. A set of 52 Lagrangian float trajectories from Knight Inlet and 10 trajectories from below the mixed layer in the wintertime northeast Pacific were analyzed using frequency spectra. A subset of 28 trajectories transit the Knight Inlet sill where energetic internal waves and strong turbulent mixing coexist. Vertical velocity spectra show a progression from a nearly Garrett–Munk internal wave spectrum at low energies to a shape characteristic of homogeneous turbulence at high energies. All spectra show a break in slope at a frequency close to the buoyancy frequency N. Spectra from the Knight Inlet sill are analyzed in more detail. For “subbuoyant” frequencies (less than N) all 28 spectra exhibit a ratio of vertical-to-horizontal kinetic energy that varies with frequency as predicted by the linear internal wave equations. All spectra have a shape similar to that ...

Collaboration


Dive into the Ren-Chieh Lien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Huei Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sen Jan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Ma

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Craig M. Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Yiing Jang Yang

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge