Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ren Huang.
Nature | 2018
Peng Zhou; Hang Fan; Tian Lan; Xing-Lou Yang; Weifeng Shi; Wei Zhang; Yan Zhu; Yawei Zhang; Qingmei Xie; Shailendra Mani; Xiao-Shuang Zheng; Bei Li; Jin-Man Li; Hua Guo; Guangqian Pei; Xiaoping An; Jun-Wei Chen; L. Zhou; Kaijie Mai; Zixian Wu; Di Li; Danielle E. Anderson; Libiao Zhang; Shi-Yue Li; Zhiqiang Mi; Tongtong He; Feng Cong; Pengju Guo; Ren Huang; Yun Luo
Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health1. Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS)2–10. Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96–98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013–2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.Analysis of viral samples from deceased piglets shows that a bat coronavirus was responsible for an outbreak of fatal disease in China and highlights the importance of the identification of coronavirus diversity and distribution in bats in order to mitigate future outbreaks of disease.
Helicobacter | 2017
Miaoli Wu; Dan Rao; Yujun Zhu; Jing Wang; Wen Yuan; Yu Zhang; Ren Huang; Pengju Guo
Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species.
Journal of Virological Methods | 2016
Wen Yuan; Jing Wang; Fengjiao Xu; Bihong Huang; Yuexiao Lian; Dan Rao; Xueqin Yin; Miaoli Wu; Yujun Zhu; Yu Zhang; Ren Huang; Pengju Guo
Abstract Theiler’s murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×101 copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation <3.1%. 439 clinical samples were evaluated by both duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses.
Molecular and Cellular Probes | 2018
Lei Ma; Feng Cong; Yujun Zhu; Miaoli Wu; Fengjiao Xu; Ren Huang; Robert J. Moore; Pengju Guo
Theilers murine encephalomyelitis virus (TMEV) is one of the most common viral pathogens that circulate widely in captive mouse colonies. A molecular biology detection method would be a useful tool to use in an integrated program to monitor and prevent TMEV infection and transmission. Thus, a reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed to detect TMEV infection. The sensitivity of the RT-RPA assay approached 8 copies per reaction, which is equivalent to the sensitivity of RT-qPCR reactions. This assay did not detect RNA extracts from other murine pathogens included in this study or TMEV negative samples. Brain tissues and contaminated biological materials were used to assess the clinical performance of the RT-RPA. The detection results of RT-RPA and RT-qPCR were very similar, except that a contaminated biological material sample which was positive by RT-qPCR, with a CT value of 38, was negative by RT-RPA. In summary, the developed RT-RPA assay offers a rapid, sensitive and specific alternative method for monitoring of TMEV, especially in resource-limited conditions.
Journal of Virological Methods | 2018
Fanwen Zeng; Feng Cong; Xiangnan Liu; Yuexiao Lian; Miaoli Wu; Li Xiao; Wen Yuan; Ren Huang; Jingyun Ma; Pengju Guo; Manlin Luo
Senecavirus A (SVA), formerly known as Seneca Valley Virus (SVV), is one of causative agents of vesicular diseases in swine. Recently, the outbreaks associated with vesicular disease caused by SVA infection in pig herds have been reported in Brazil, USA, China, Thailand and Canada. Several molecular detection methods have been established to determine the infection of SVA, including real time reverse transcription PCR assay, nested PCR, a TaqMan-based qRT-PCR assay and RNA-based in situ hybridization method. In our study, an assay for the identification of SVA in pig herds using real time reverse transcription loop-mediated isothermal amplification (real time RT-LAMP) was developed. The limit of detection for the assay was 1 TCID50/ml. One hundred and eighteen field samples from pigs were used to validate the assay for clinical application. Our result demonstrated that real time RT-LAMP assay is a cost-effective and highly specific and sensitive alternative for the rapid detection of SVA in clinical samples.
Frontiers in Microbiology | 2018
Miaoli Wu; Feng Cong; Yujun Zhu; Yuexiao Lian; Meili Chen; Ren Huang; Pengju Guo
More and more dogs have been used as a disease model for medical research and drug safety evaluation. Therefore, it is important to make sure that the dogs and their living houses are special pathogen free. In this study, the development and evaluation of a Luminex xTAG assay for simultaneous detection of five canine viruses was carried out, including canine distemper virus, canine parvovirus, canine parainfluenza virus, canine adenovirus, and rabies virus. Assay specificity was accomplished by targeting conserved genomic regions for each virus. Hybridization between multiplexed PCR products and the labeled fluorescence microspheres was detected in a high throughput format using a Luminex fluorescence reader. The Luminex xTAG assay showed high sensitivity with limits of detection for the five viruses was 100 copies/μL. Specificity of the xTAG assay showed no amplification of canine coronavirus, pseudorabies virus and canine influenza virus indicating that the xTAG assay was specific. Seventy-five clinical samples were tested to evaluate the xTAG assay. The results showed 100% coincidence with the conventional PCR method. This is the first report of a specific and sensitive multiplex Luminex xTAG assay for simultaneous detection of five major canine viral pathogens. This assay will be a useful tool for quality control and environmental monitoring for dogs used as laboratory animals, may even be applied in laboratory epidemiological investigations.
BMC Veterinary Research | 2018
Miaoli Wu; Yujun Zhu; Feng Cong; Dan Rao; Wen Yuan; Jing Wang; Bihong Huang; Yuexiao Lian; Yu Zhang; Ren Huang; Pengju Guo
BackgroundDomestic rabbits especially New Zealand white rabbits play an important role in biological research. The disease surveillance and quality control are essential to guarantee the results of animal experiments performed on rabbits. Rabbit hemorrhagic disease virus, rabbit rotavirus and Sendai virus are the important pathogens that needed to be eliminated. Rapid and sensitive method focus on these three viruses should be established for routine monitoring. The Luminex x-TAG assay based on multiplex PCR and fluorescent microsphere is a fast developing technology applied in high throughput detection. Specific primers modified with oligonucleotide sequence/biotin were used to amplify target fragments. The conjugation between oligonucleotide sequence of the PCR products and the MagPlex-TAG microspheres was specific without any cross-reaction, and the hybridization products could be analyzed using the Luminex 200 analyzer instrument. Recombinant plasmids were constructed to estimate the detection limit of the viruses. Furthermore, 40 clinical samples were used to evaluate the efficiency of this multiplex PCR based Luminex x-TAG assay.ResultsAccording to the results, this new method showed high specificity and good stability. Assessed by the recombinant plasmids, the detection limit of three viruses was 100copies/μl. Among 40 clinical specimens, 18 specimens were found positive, which was completely concordant with the conventional PCR method.ConclusionsThe new developed Luminex x-TAG assay is an accurate, high throughput method for rapid detection of three important viruses of rabbits.
Journal of Virological Methods | 2017
Fengjiao Xu; Wen Yuan; Tongyuan Zhang; Yujun Zhu; Yuexiao Lian; Yu Zhang; Ren Huang; Pengju Guo
There are currently four rat parvoviruses including Kilham rat virus (KRV), Toolans H-1 parvovirus (H-1virus), rat parvovirus type 1a (RPV-1a) and rat minute virus (RMV). Virus detection methods are commonly based on conventional PCR - agarose gel electrophoresis or serological assay methods These methods are both time-consuming and lack specificity. In this study, we developed a bead array xTAG assay for the simultaneous detection and discrimination of four rat parvoviruses. The detection limits ranged from 100 to 1000 copies/μL of input purified plasmid DNA. We examined 50 clinical specimens and 15 facal samples by xTAG assay and conventional PCR. The results showed a high consistency except for several weak positive infections. It demonstrated that the xTAG-multiplex PCR method is specific, sensitive and suitable for high throughput platforms for rat parvovirus screening of clinical samples and contaminated biological materials.
Journal of Virological Methods | 2017
Dan Rao; Miaoli Wu; Jing Wang; Wen Yuan; Yujun Zhu; Feng Cong; Fengjiao Xu; Yuexiao Lian; Bihong Huang; Q. Wu; Meili Chen; Yu Zhang; Ren Huang; Pengju Guo
Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV.
Molecular and Cellular Probes | 2017
Feng Cong; Yujun Zhu; Xiangnan Liu; Xiuzhen Li; Meili Chen; Ren Huang; Pengju Guo