Renae L. Malek
J. Craig Venter Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renae L. Malek.
Genome Biology | 2003
Hong-Ying Wang; Renae L. Malek; Anne E. Kwitek; Andrew S. Greene; Truong Luu; Babak Behbahani; Bryan Frank; John Quackenbush; Norman H. Lee
BackgroundLong oligonucleotide microarrays are potentially more cost- and management-efficient than cDNA microarrays, but there is little information on the relative performance of these two probe types. The feasibility of using unmodified oligonucleotides to accurately measure changes in gene expression is also unclear.ResultsUnmodified sense and antisense 70-mer oligonucleotides representing 75 known rat genes and 10 Arabidopsis control genes were synthesized, printed and UV cross-linked onto glass slides. Printed alongside were PCR-amplified cDNA clones corresponding to the same genes, enabling us to compare the two probe types simultaneously. Our study was designed to evaluate the mRNA profiles of heart and brain, along with Arabidopsis cRNA spiked into the labeling reaction at different relative copy number. Hybridization signal intensity did not correlate with probe type but depended on the extent of UV irradiation. To determine the effect of oligonucleotide concentration on hybridization signal, 70-mers were serially diluted. No significant change in gene-expression ratio or loss in hybridization signal was detected, even at the lowest concentration tested (6.25 μm). In many instances, signal intensity actually increased with decreasing concentration. The correlation coefficient between oligonucleotide and cDNA probes for identifying differentially expressed genes was 0.80, with an average coefficient of variation of 13.4%. Approximately 8% of the genes showed discordant results with the two probe types, and in each case the cDNA results were more accurate, as determined by real-time PCR.ConclusionsMicroarrays of UV cross-linked unmodified oligonucleotides provided sensitive and specific measurements for most of the genes studied.
Endocrinology | 2001
Amilcar Flores-Morales; Nina Ståhlberg; Petra Tollet-Egnell; Joakim Lundeberg; Renae L. Malek; John Quackenbush; Norman H. Lee; Gunnar Norstedt
Complementary DNA microarrays containing 3000 different rat genes were used to study the consequences of severe hormonal deficiency (hypophysectomy) on the gene expression patterns in heart, liver, and kidney. Hybridization signals were seen from a majority of the arrayed complementary DNAs; nonetheless, tissue-specific expression patterns could be delineated. Hypophysectomy affected the expression of genes involved in a variety of cellular functions. Between 16-29% of the detected transcripts from each tissue changed expression level as a reaction to this condition. Chronic treatment of hypophysectomized animals with human GH also caused significant changes in gene expression patterns. The study confirms previous knowledge concerning certain gene expression changes in the above-mentioned situations and provides new information regarding hypophysectomy and chronic human GH effects in the rat. Furthermore, we have identified several new genes that respond to GH treatment. Our results represent a first step toward a more global understanding of gene expression changes in states of hormonal deficiency.
Molecular and Cellular Biology | 2001
Lance D. Miller; Kyung Soo Park; Qingbin M. Guo; Nawal W. Alkharouf; Renae L. Malek; Norman H. Lee; Edison T. Liu; Sheue-yann Cheng
ABSTRACT To investigate the transcriptional program underlying thyroid hormone (T3)-induced cell proliferation, cDNA microarrays were used to survey the temporal expression profiles of 4,400 genes. Of 358 responsive genes identified, 88% had not previously been reported to be transcriptionally or functionally modulated by T3. Partitioning the genes into functional classes revealed the activation of multiple pathways, including glucose metabolism, biosynthesis, transcriptional regulation, protein degradation, and detoxification in T3-induced cell proliferation. Clustering the genes by temporal expression patterns provided further insight into the dynamics of T3 response pathways. Of particular significance was the finding that T3 rapidly repressed the expression of key regulators of the Wnt signaling pathway and suppressed the transcriptional downstream elements of the β-catenin–T-cell factor complex. This was confirmed biochemically, as β-catenin protein levels also decreased, leading to a decrease in the transcriptional activity of a β-catenin-responsive promoter. These results indicate that T3-induced cell proliferation is accompanied by a complex coordinated transcriptional reprogramming of many genes in different pathways and that early silencing of the Wnt pathway may be critical to this event.
Molecular and Cellular Neuroscience | 1999
Michelle Glickman; Renae L. Malek; Anne E. Kwitek-Black; Howard J. Jacob; Norman H. Lee
A novel and differentially expressed gene, named nrg-1, was identified by EST expression profiling and subsequently isolated as a 2.2-kb full-length clone from a rat PC12 cell cDNA library. Sequence analysis reveals that nrg-1 encodes a putative seven transmembrane spanning domain protein with structural features characteristic of receptors belonging to the G-protein-coupled receptor gene superfamily. The 400-amino-acid protein encoded by nrg-1 exhibits a high degree of sequence identity (40-44%) to the Edg receptor family; members include Edg-1, Edg-2, Edg-3, Edg-4, and H218. Both Northern analysis andEST expression profiling revealed that whole-tissue distribution of nrg-1 mRNA is restricted, found almost exclusively in brain. Transcripts of nrg-1 could be ubiquitously detected in different regions, with very prominent expression in lower brain regions such as the midbrain, pons,medulla, and spinal cord. In PC12 cells, nerve growth factor induces neuronal differentiation and repressed expression of nrg-1. Two other agents that differentiate PC12 cells, fibroblast growth factor and dibdutyryl cAMP, down-regulated nrg-1 mRNA levels. Epidermal growth factor, and agent that does not induce differentiation, did not repress nrg-1 mRNA levels. In a PC12 cell mutant that is deficient in protein kinase A activity (AB.11), all three differentiating agents were unable to down-regulate nrg-1 mRNA. Hence, protein kinase A appears to be an obligatory cellular component in nrg-1 mRNA regulation. Chromosomal mapping employing a rat somatic cell readiation hybrid panel demonstrated that nrg-1 is linked to marker D8Rat54 and tightly associated with H218 on chromosome 8.
Oncogene | 2002
Renae L. Malek; Rosalyn B. Irby; Qingbin M. Guo; Kerry Lee; Sylvia Wong; Mei He; Jennifer Tsai; Bryan Frank; Edison T. Liu; John Quackenbush; Richard Jove; Timothy J. Yeatman; Norman H. Lee
We used a classical rodent model of transformation to understand the transcriptional processes, and hence the molecular and cellular events a given cell undergoes when progressing from a normal to a transformed phenotype. Src activation is evident in 80% of human colon cancer, yet the myriad of cellular processes effected at the level of gene expression has yet to be fully documented. We identified a Src ‘transformation fingerprint’ within the gene expression profiles of Src-transformed rat 3Y1 fibroblasts demonstrating a progression in transformation characteristics. To evaluate the role of this gene set in human cancer development and progression, we extracted the orthologous genes present on the Affymetrix Hu95A GeneChip™ (12k named genes) and compared expression profiles between the Src-induced rodent cell line model of transformation and staged colon tumors where Src is known to be activated. A similar gene expression pattern between the cell line model and staged colon tumors for components of the cell cycle, cytoskeletal associated proteins, transcription factors and lysosomal proteins suggests the need for co-regulation of several cellular processes in the progression of cancer. Genes not previously implicated in tumorigenesis were detected, as well as a set of 14 novel, highly conserved genes with here-to-fore unknown function. These studies define a set of transformation associated genes whose up-regulation has implications for understanding Src mediated transformation and strengthens the role of Src in the development and progression of human colon cancer. Supportive Supplemental Data can be viewed at http://pga.tigr.org/PGApubs.shtml.
Oncogene | 2005
Hidemi Teramoto; Maria Domenica Castellone; Renae L. Malek; Noah E. Letwin; Bryan Frank; J. Silvio Gutkind; Norman H. Lee
Activated forms of Ras family members are prevalent in many cancers where Ras mutants transduce signals essential for transformation, angiogenesis, invasion and metastasis. As a cancer progression model, we used NIH3T3 cells to explore the mechanism of Ras-induced tumorigenesis. Ras family mutants H-RasV12 and Rit79L strongly induced foci formation, while Rho family mutants RhoA-QL, Rac1-QL and Cdc42-QL were less effective. A comparison of downstream transcriptional targets of Ras and Rho family members using a 26 383 element cDNA microarray revealed that the osteopontin (OPN) gene exhibited the best correlation between magnitude of gene expression change and level of foci formation (r=0.96, P<0.001). In association with H-RasV12- and Rit79L-mediated transformation, foci secreted OPN protein and upregulated the OPN receptor CD44, suggesting the novel initiation of an aberrant OPN-CD44-Rac autocrine pathway. In support of this were the following observations. First, RGD-deficient OPN protein-binding activity was present in H-RasV12-transformed cells but not in control cells, and binding activity was inhibited by the CD44 blocking antibody. Second, foci formation, cell invasion and Rac activity were induced by H-RasV12 and inhibited by the CD44 blocking antibody. Third, foci formation by H-RasV12 was substantially reduced by a short interfering RNA (siRNA) specifically targeting OPN expression for knockdown. Fourth, H-RasV12-mediated transformation was not blocked by the GRGDS peptide, suggesting that OPN effects were not mediated by the integrins. Lastly, OPN knockdown affected the downstream expression of 160 ‘2nd tier’ genes, and at least a subset of these genes appears to be involved in transformation. Indeed, four genes were selected for knockdown, each resulting in a disruption of foci formation and/or invasion. These results underscore the role of aberrant autocrine signaling and transcriptional networking during tumorigenesis.
Oncogene | 2003
Hidemi Teramoto; Renae L. Malek; Babak Behbahani; Maria Domenica Castellone; Norman H. Lee; J. Silvio Gutkind
The superfamily of small GTP-binding proteins has expanded dramatically in recent years. The Ras family has long been associated with signaling pathways contributing to normal and aberrant cell growth, while Rho-related protein function is to integrate extracellular signals with specific targets regulating cell morphology, cell aggregation, tissue polarity, cell motility and cytokinesis. Recent findings suggest that certain Rho proteins, including RhoA, Rac1 and Cdc42, can also play a role in signal transduction to the nucleus and cell growth control. However, the nature of the genes regulated by Ras and Rho GTPases, as well as their contribution to their numerous biological effects is still largely unknown. To approach these questions, we investigated the global gene expression pattern induced by activated forms of H-Ras, RhoA, Rac1 and Cdc42 using cDNA microarrays comprising 19 117 unique elements. Using this approach, we identified 1184 genes that were up- or downregulated by at least twofold. Hierarchical cluster analysis revealed the existence of patterns of gene regulation both unique and common to H-Ras V12, RhoA QL, Rac1 QL and Cdc42 QL activation. For example, H-Ras V12 upregulated osteopontin and Akt 1, and H-Ras and RhoA stimulated cyclin G1, cyclin-dependent kinase 8, cyclin A2 and HMGI-C, while Rac1 QL and Cdc42 QL upregulated extracellular matrix and cell adhesion proteins such as alpha-actinin 4, procollagen type I and V and neuropilin. Furthermore, H-Ras V12 downregulated by >eightfold 52 genes compared to only three genes by RhoA QL, Rac1 QL and Cdc42 QL. These results provide key information to begin unraveling the complexity of the molecular mechanisms underlying the transforming potential of Ras and Rho proteins, as well as the numerous morphological and cell cycle effects induced by these small GTPases.
Nature Genetics | 2006
Renae L. Malek; Hong Ying Wang; Anne E. Kwitek; Andrew S. Greene; Nirmal K. Bhagabati; Gretta Borchardt; Lisa Cahill; Tracey Currier; Bryan Frank; Xianping Fu; Michael Hasinoff; Eleanor A. Howe; Noah Letwin; Truong Luu; Alexander I. Saeed; Hedieh Sajadi; Razvan Sultana; Mathangi Thiagarajan; Jennifer Tsai; Kathleen Veratti; Joseph White; John Quackenbush; Howard J. Jacob; Norman H. Lee
Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.
Journal of Biological Chemistry | 1998
Norman H. Lee; Renae L. Malek
Nerve growth factor (NGF) up-regulated steady-state levels of m4 muscarinic acetylcholine receptor (mAChR) mRNA in PC12 cells. Up-regulation of mRNA levels was associated with a corresponding increase in mAChR binding sites. Two other growth factors, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), up-regulated m4 mRNA and mAChR binding sites. Treatment of PC12 cells with NGF and bFGF, but not EGF, has previously been demonstrated to result in sustained activation of mitogen-activated protein kinase (MAPK). Analogously, NGF and bFGF, but not EGF, increased the stability of m4 mRNA in PC12 cells. In HER-PC12 cells, a clonal PC12 cell transfectant overexpressing EGF receptors and displaying sustained MAPK activation upon receptor stimulation, EGF treatment stabilized the m4 transcript. A synthetic inhibitor of MAPK kinase, PD98059, inhibited growth factor-induced stabilization of the m4 transcript in both PC12 and HER-PC12 cells. These findings demonstrate that the MAPK pathway is involved in transcript stabilization. Cycloheximide pretreatment abolished the post-transcriptional effect of NGF, indicating that de novoprotein synthesis was required for the observed increase in m4 mRNA stability. By contrast, cycloheximide had no discernible post-transcriptional effect if added after NGF treatment, suggesting that an inducible yet stable protein factor was involved in m4 mRNA decay. An unusually well conserved 137 nucleotides of m4 3′-untranslated region has been identified by sequence comparison with other mRNAs that are post-transcriptionally regulated by NGF. In PC12 cells that heterologously overexpress this region, we demonstrate that NGF no longer stabilizes endogenous m4 mRNA. This conserved region probably represents an NGF-responsive element involved in mRNA stability regulation. Finally, transcription of the m4 gene can be induced by all three growth factors but is not dependent on MAPK activity, unlike growth factor-induced m4 mRNA stabilization.
Nature Genetics | 1999
Renae L. Malek; Qingbin Guo; Mauro Ruffy; Edison T. Liu; Ingeborg Holt; Ishwar Chandra; Feng Liang; Jonathan Upton; John Quackenbush; Richard Jove; Timothy J. Yeatman; Norman H. Lee
Use of the Rat Gene Index to examine gene expression patterns from Src-transformed rat fibroblasts that exhibit broad differences in metastatic potential