Renata L. S. Gonçalves
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renata L. S. Gonçalves.
PLOS Pathogens | 2011
Jose Henrique M. Oliveira; Renata L. S. Gonçalves; Flávio Alves Lara; Felipe A. Dias; Ana Caroline P. Gandara; Rubem F. S. Menna-Barreto; Meredith C. Edwards; Francisco R.M. Laurindo; Mário A.C. Silva-Neto; Marcos Henrique Ferreira Sorgine; Pedro L. Oliveira
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Free Radical Biology and Medicine | 2009
Rubem F. S. Menna-Barreto; Renata L. S. Gonçalves; Elaine M. Costa; Raphael S. F. Silva; Antonio V. Pinto; Marcus F. Oliveira; Solange L. de Castro
Despite ongoing efforts, the current treatment for Chagas disease is still unsatisfactory, mainly because of the severe side effects and variable efficacy of the available nitroheterocycles. Our group has been assaying natural quinones isolated from Brazilian flora, and their derivatives, as alternative chemotherapeutic agents against Trypanosoma cruzi. From C-allyl lawsone three naphthofuranquinones were synthesized, which were active against trypomastigotes and epimastigotes. Here, we further investigated the activity and the mechanisms of action of these quinones. They exhibited powerful effects on intracellular amastigotes, presenting low toxicity to the host cells. Ultrastructural analyses of treated epimastigotes and trypomastigotes indicated a potent effect of the three naphthofuranquinones on the parasite mitochondrion, which appeared drastically swollen and with a washed-out matrix profile. Fluorescence-activated cell sorting analysis of rhodamine 123-stained T. cruzi showed that the three naphthofuranquinones caused a potent dose-dependent collapse of the mitochondrial membrane potential, especially in the epimastigote form. Naphthofuranquinones also decreased specifically mitochondrial complex I-III activity in both epimastigotes and trypomastigotes, parallel to a reduction in succinate-induced oxygen consumption. Mitochondrial hydrogen peroxide formation was also increased in epimastigotes after treatment with the naphthofuranquinones. Our results indicate that the trypanocidal action of the naphthofuranquinones is associated with mitochondrial dysfunction, leading to increased reactive oxygen species generation and parasite death.
Journal of Bioenergetics and Biomembranes | 2011
Renata L. S. Gonçalves; Rubem F.S. Menna Barreto; Carla Polycarpo; Fernanda Ramos Gadelha; Solange L. de Castro; Marcus F. Oliveira
Trypanosoma cruzi is a hemoflagellate protozoan that causes Chagas’ disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host. Herein, we performed a functional assessment of mitochondrial metabolism in the following two distinct evolutive forms of T. cruzi: the insect stage epimastigote and the freshly isolated bloodstream trypomastigote. We observed that in comparison to epimastigotes, bloodstream trypomastigotes facilitate the entry of electrons into the electron transport chain by increasing complex II-III activity. Interestingly, cytochrome c oxidase (CCO) activity and the expression of CCO subunit IV were reduced in bloodstream forms, creating an “electron bottleneck” that favored an increase in electron leakage and H2O2 formation. We propose that the oxidative preconditioning provided by this mechanism confers protection to bloodstream trypomastigotes against the host immune system. In this scenario, mitochondrial remodeling during the T. cruzi life cycle may represent a key metabolic adaptation for parasite survival in different hosts.
PLOS ONE | 2012
Renata L. S. Gonçalves; Jose Henrique M. Oliveira; Giselle de Almeida Oliveira; John F. Andersen; Marcus F. Oliveira; Pedro L. Oliveira; Carolina Barillas-Mury
Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.
Insect Biochemistry and Molecular Biology | 2011
Jose Henrique M. Oliveira; Renata L. S. Gonçalves; Giselle de Almeida Oliveira; Pedro L. Oliveira; Marcus F. Oliveira; Carolina Barillas-Mury
Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection.
PLOS ONE | 2009
Renata L. S. Gonçalves; Ana Machado; Gabriela O. Paiva-Silva; Marcos Henrique Ferreira Sorgine; Marisa M. Momoli; Jose Henrique M. Oliveira; Marcos A. Vannier-Santos; Antonio Galina; Pedro L. Oliveira; Marcus F. Oliveira
Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a 3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding.
PLOS Neglected Tropical Diseases | 2017
Jose Henrique M. Oliveira; Octávio A. C. Talyuli; Renata L. S. Gonçalves; Gabriela O. Paiva-Silva; Marcos Henrique Ferreira Sorgine; Patricia H. Alvarenga; Pedro L. Oliveira
Background Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence. Methodology/Principal findings We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB) reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut) 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts). Conclusion/Significance Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections.
Bioscience Reports | 2016
Ana Caroline P. Gandara; Jose Henrique M. Oliveira; Rodrigo Dutra Nunes; Renata L. S. Gonçalves; Felipe A. Dias; Fabio Hecht; Denise C. Fernandes; Fernando A. Genta; Francisco R.M. Laurindo; Marcus F. Oliveira; Pedro L. Oliveira
Rhodnius prolixus midgut redox balance is regulated by a signalling pathway involving amino-acids/TORC/mitochondrial ROS to protect the midgut from oxidative damage.
Anais Da Academia Brasileira De Ciencias | 2003
Milena B.P Soares; Renata L. S. Gonçalves; Alexandre dos Santos Pyrrho; Deise A. Costa; Claudia N. Paiva; Cerli Rocha Gattass
We have previously demonstrated that inoculation of BALB/c mice with trypomastigotes of CL-14, an avirulent Trypanosoma cruzi clone, prevents the development of parasitemia and mortality after challenge with virulent CL strain. In this report, we investigated the cytokine and antibody profiles induced by inoculation with CL-14 clone. Groups of mice were inoculated with trypomastigotes of CL-14 clone and challenged with infective CL strain. Challenged CL-14-inoculated mice had lower levels of IFN-gamma and higher production of IgG1 antibodies as compared to CL strain-infected mice. Previous inoculation with CL-14 clone partially prevented the suppression of IL-2 production caused by CL strain infection. No significant differences were found regarding IL-4 production by splenocytes from CL-14-inoculated or control groups after challenge with CL-strain. Our results show that protection against acute T. cruzi infection induced by CL-14 inoculation correlates with a balanced T1/T2 cytokine production, a profile likely to be beneficial for the host.
Experimental Parasitology | 2002
Claudia N. Paiva; Alexandre dos Santos Pyrrho; Liane J. Ribeiro; Renata L. S. Gonçalves; Deise A. Costa; Tania C. de Araújo-Jorge; Milena B.P Soares; Cerli Rocha Gattass
Immunization with CL-14-trypomastigotes generates efficient humoral and cellular responses against infective challenge. Herein, we investigated the relevance of these mechanisms in vivo. Immunization with live CL-14-trypomastigotes protected only part of beta2m(-/-) mice but efficiently protected perforin-knockout mice. Fixed CL-14-trypomastigotes could successfully immunize BALB/c, though live trypomastigotes lowered the requirements for doses and time intervals. Post-immune depletion of CD4 or CD8 subsets did not affect protection conferred by immunization, but switched the production of anti-Trypanosoma cruzi antibodies to IgG2a. Sublethal irradiation partially broke the resistance of immune mice, leading to development of late parasitemia. Passive serum transfer from immune mice conferred protection to nai;ve mice. Our results indicate that presentation of cytosolic antigens by MHC class I molecules is involved in the generation of immunity and suggest that the humoral response contributes to a great extent to keep CL-14-immunized mice protected against infective challenge.