Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Stripecke is active.

Publication


Featured researches published by Renata Stripecke.


Gene Therapy | 1999

Immune response to green fluorescent protein: implications for gene therapy.

Renata Stripecke; M del Carmen Villacres; Dianne C. Skelton; N Satake; Stephanie Halene; Donald B. Kohn

Green fluorescent protein (GFP) is a widely used intracellular reporter molecule to assess gene transfer and expression. A potential use for GFP is as a co-expressed marker, to select and enrich gene-modified cells by flow cytometry. Processed peptides derived from GFP and presented by the major histocompatibility complex on the cell surface could potentially induce T cell immune responses against GFP+ cells. Thus, clinical application of GFP is premature, since in vivo studies on its immunogenicity are lacking. Therefore, we investigated immune responses against EGFP (enhanced-GFP) in two transplantable murine models: the BALB/c (H-2d) BM185 pre-B leukemia and the C57BL/6 (H-2b) EL-4 T cell lymphoma. BM185 and EL-4 cell lines modified to express high levels of EGFP showed drastic reduction of disease development when transplanted into immunocompetent mice. BM185/ EGFP did lead to rapid development of disease in immunodeficient Nu/Nu mice. Mice surviving BM185/EGFP leukemia challenge developed high cytotoxic T lymphocyte (CTL) responses against EGFP-expressing cells. Furthermore, immune stimulation against BM185/EGFP cells could also be induced by immunization with EGFP+ transduced dendritic cells. The effects of the co-expression of EGFP and immunomodulators (CD80 plus GM-CSF) were also investigated as an irradiated leukemia vaccine. EGFP co-expression by the vaccine did not interfere with the development of CTLs against the parental leukemia or with the anti-leukemia response in vivo. These results indicate that the immune response against EGFP may interfere with its applicability in gene insertion/replacement strategies but could potentially be employed for leukemia cell vaccines.


Journal of Immunology | 2006

The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: Relation to central nervous system antitumor immunity

Robert M. Prins; Noah Craft; Kevin W. Bruhn; Haumith Khan-Farooqi; Richard C. Koya; Renata Stripecke; Jeff F. Miller; Linda M. Liau

Immunotherapy represents an appealing option to specifically target CNS tumors using the immune system. In this report, we tested whether adjunctive treatment with the TLR-7 agonist imiquimod could augment antitumor immune responsiveness in CNS tumor-bearing mice treated with human gp100 + tyrosine-related protein-2 melanoma-associated Ag peptide-pulsed dendritic cell (DC) vaccination. Treatment of mice with 5% imiquimod resulted in synergistic reduction in CNS tumor growth compared with melanoma-associated Ag-pulsed DC vaccination alone. Continuous imiquimod administration in CNS tumor-bearing mice, however, was associated with the appearance of robust innate immune cell infiltration and hemorrhage into the brain and the tumor. To understand the immunological mechanisms by which imiquimod augmented antitumor immunity, we tested whether imiquimod treatment enhanced DC function or the priming of tumor-specific CD8+ T cells in vivo. With bioluminescent, in vivo imaging, we determined that imiquimod dramatically enhanced both the persistence and trafficking of DCs into the draining lymph nodes after vaccination. We additionally demonstrated that imiquimod administration significantly increased the accumulation of tumor-specific CD8+ T cells in the spleen and draining lymph nodes after DC vaccination. The results suggest that imiquimod positively influences DC trafficking and the priming of tumor-specific CD8+ T cells. However, inflammatory responses induced in the brain by TLR signaling must also take into account the local microenvironment in the context of antitumor immunity to induce clinical benefit. Nevertheless, immunotherapeutic targeting of malignant CNS tumors may be enhanced by the administration of the innate immune response modifier imiquimod.


Journal of Immunotherapy | 2003

Potent maturation of monocyte-derived Dendritic cells after CD40L lentiviral gene delivery

Richard C. Koya; Nori Kasahara; Patricia M. B. Favaro; Roy Lau; Huy Q. Ta; Jeffrey S. Weber; Renata Stripecke

Dendritic cells (DCs) are being evaluated in immunization protocols to enhance immunity against infectious diseases and cancer. Interaction of T-helper cells expressing CD40 ligand (CD40L) with its cognate CD40 receptor on DCs leads to a mature DC phenotype, characterized by increased capacity of antigen presentation to cytotoxic T cells. The authors examined the ability of third-generation self-inactivating lentiviral vectors expressing CD40L to induce autonomous maturation of ex vivo expanded human monocyte-derived dendritic cells. Transduction with lentiviral vectors achieved a highly efficient gene transfer of CD40L to DCs, which correlated with phenotypic maturation as shown by the expression of immunologic relevant markers (CD83, CD80, MHCI) and secretion of IL-12, whereas DC phenotype was not affected by a control vector expressing only the green fluorescent protein marker. Addition of recombinant IFN-&ggr; to DCs at the time of CD40L transduction further enhanced IL-12 production, and when co-cultured with allogeneic and autologous CD8+ and CD4+ T cells, a potent activation was observed. Autologous responses against an HLA-A2-restricted influenza peptide (Flu-M1) and a tumor-associated antigenic peptide (gp100 210M) were significantly enhanced when CD40L transduced DCs were used as antigen-presenting cells for in vitro stimulation of CD8+ cytotoxic T lymphocytes. These results demonstrate that endogenous expression of CD40L by lentivirally transduced DCs induced their autonomous maturation to a phenotype comparable to that induced by optimal concentrations of soluble CD40L, providing a novel tool for genetic manipulation of DCs.


Human Gene Therapy | 2001

Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein

Amy H. Lin; Nori Kasahara; Wendy Wu; Renata Stripecke; Cyril L. Empig; W. French Anderson; Paula M. Cannon

The entry of retroviral vectors into cells requires two events: binding to a cell surface receptor and the subsequent fusion of viral and cellular membranes. The host range of a vector is therefore determined largely by the receptor specificity of the fusion protein contained in the outer viral envelope. Previous attempts to generate targeted retroviral vectors have included the addition of targeting ligands to the murine leukemia virus envelope protein (MuLV Env). Although such proteins frequently display modified cell-binding characteristics, the interaction with the targeted receptors fails to trigger virus-cell fusion. Here, we report the use of a binding-defective but fusion-competent hemagglutinin (HA) protein to complement the fusion defect in a chimeric MuLV Env targeted to the Flt-3 receptor. Retroviral vectors containing both proteins showed enhanced transduction of cells expressing Flt-3, which was abrogated by preincubating the target cells with soluble Flt-3 ligand. Furthermore, the fusion function of HA was absolutely required. These data demonstrate that it is possible to separate the binding and fusion events of retroviral entry, using two separate proteins, and suggest that varying the binding protein component in this scheme may allow a general strategy for targeting retroviral vectors.


Leukemia | 2002

Immunotherapy with acute leukemia cells modified into antigen-presenting cells: ex vivo culture and gene transfer methods

Renata Stripecke; Alexandra M. Levine; Vinod Pullarkat; Angelo A. Cardoso

Adult patients with acute leukemia have, in general, a poor prognosis, with long-term, disease-free survival achieved in only approximately one-third of cases. One of the proposed mechanisms for this poor overall response is the inability of the immune system to detect and eliminate residual malignant leukemia cells, which subsequently serve as a source of leukemic relapse. This review discusses the rationale of immunotherapy for acute leukemia and presents in vitro and in vivo model systems that were devised for pre-B acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). New advances in the ex vivo manipulation of acute leukemia cells are presented, which attempt to modify these cells into functional antigen-presenting cells. These cells can then be used as autologous vaccines at the time of minimal residual disease after standard chemotherapy, to stimulate host immune responses against their own leukemia cells. The various approaches toward this aim include incubation of leukemia cells with cytokines or growth factors and gene manipulation of these cells. In particular, ex vivo culture of ALL cells with CD40 ligand, incubation of AML cells with granulocyte–macrophage colony-stimulating factor and interleukin-4 (GM-CSF/IL-4) and lentiviral transduction of ALL and AML cells for expression of immunomodulators (CD80 and GM-CSF) are current approaches under investigation for the development of autologous acute leukemia cell vaccines.


Leukemia | 2002

Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses

Richard C. Koya; Nori Kasahara; Vinod Pullarkat; Alexandra M. Levine; Renata Stripecke

Acute myeloid leukemia (AML) patients treated with available therapies achieve remission in approximately 60% of cases, but the long-term event-free survival is less than 30%. Use of immunotherapy during remission is a potential approach to increase survival. We propose to develop cell vaccines by genetic modification of AML cells with CD80, an essential T cell costimulator that is lacking in the majority of AML cases, and GM-CSF, to induce proliferation and activation of professional antigen-presenting cells. Here, we evaluated third generation selfinactivating (SIN) lentiviral vectors, which have the potential advantage of improved safety. CD80 and GM-CSF expression by these vectors was higher than that reported with second generation vectors (Stripecke et al, Blood 2000; 96: 1317–1326). In some cases, endogenous GM-CSF expression by transduced AML cells induced phenotypic changes consistent with the maturation of leukemia blasts into antigen-presenting cells. Further, in all cases studied, GM-CSF expression was associated with higher proliferation and cell viability. Allogeneic and autologous mixed lymphocyte reactions performed with transduced irradiated AML cells expressing CD80 and/or GM-CSF demonstrated that expression of either transgene enhanced T cell activation. These pre-clinical data demonstrate the potential feasibility of third generation SIN vectors for use in AML immunotherapy.


Human Gene Therapy | 1999

Combination of CD80 and Granulocyte-Macrophage Colony-Stimulating Factor Coexpression by a Leukemia Cell Vaccine: Preclinical Studies in a Murine Model Recapitulating Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

Renata Stripecke; D.C. Skelton; Paul K. Pattengale; Hiroyuki Shimada; Donald B. Kohn

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is a highly aggressive malignancy caused by the bcr-abl translocation oncogene. To explore alternative treatments for Ph+ ALL we tested gene-modified cell vaccines in the BALB/c-derived BM185 leukemia model. We compared the efficacy of BM185 cell vaccine expressing CD80 alone or in combination with IL-2 or GM-CSF. Mice injected with viable BM185 leukemia cells modified to express CD80 and GM-CSF (BM185/CD80+GM-CSF) showed the highest leukemia rejection rates. Cell vaccines consisting of irradiated BM185/CD80+GM-CSF cells administered subcutaneously stimulated a potent cytotoxic T lymphocyte (CTL) response against parental BM185. Histological examination of the vaccination site showed a large concentration of immune cells. Administration of the BM185/CD80+GM-CSF cell vaccine before intravenous challenge with parental cells caused strong inhibition of leukemia development. Vaccination after subcutaneous challenge with BM185 cells caused efficient elimination of leukemia promoting 40-60% long-term survival rates. The immunization efficacy of the BM185/CD80+ GM-CSF cell vaccine was directly correlated with the percentage of cells expressing the transgenes. In all, this preclinical study shows that leukemia cell vaccines coexpressing CD80 and GM-CSF can potentially be explored for immunotherapy in Ph+ ALL patients.


Human Gene Therapy | 2004

Making dendritic cells from the inside out: Lentiviral vector-mediated gene delivery of granulocyte-macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro

Richard C. Koya; Jeffrey S. Weber; Nori Kasahara; Roy Lau; Maria C. Villacres; Alexandra M. Levine; Renata Stripecke

We have evaluated a one-hit lentiviral transduction approach to genetically modifying monocytes in order to promote autocrine and paracrine production of factors required for their differentiation into immature dendritic cells (DCs). High-titer third-generation self-inactivating lentiviral vectors expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) efficiently achieved simultaneous and persistent codelivery of the transgenes into purified human CD14+ monocytes. Coexpression of GM-CSF and IL-4 in CD14+ cells was sufficient to induce their differentiation into a DC-like phenotype, as evidenced by their morphology, immature immunophenotypic profile (CD14-, CD1a+, CD80+, CD86+, MHC-I+, MHC-II+), and their ability to further develop into a mature phenotype (CD83+) on further treatment with soluble CD40 ligand. Mixed lymphocyte reactions showed that the T cell-stimulating activity of lentivirus-modified DCs was superior to that of DCs grown by conventional methods. Lentivirus-modified DCs displayed efficient antigen-specific, MHC class I-restricted stimulation of autologous CD8+ T cells, as shown by IFN-gamma production and CTL assays. DCs coexpressing GM-CSF and IL-4 could be kept metabolically active and viable in culture for 14 days in the absence of exogenously added growth factors, unlike conventionally produced DCs. Coexpression of FLT3 ligand did not improve the viability, expansion, or immunologic performance of lentivirus-modified DCs. This article demonstrates the proof-of-concept to genetically convert monocytes to DC-type antigen-presenting cells with lentiviral vectors.


Blood Cells Molecules and Diseases | 2003

The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors.

Renata Stripecke; Richard C. Koya; Huy Q. Ta; Nori Kasahara; Alexandra M. Levine

Our goal is to develop cell vaccines against leukemia cells, genetically modified to express molecules with potent immune-stimulatory capacities. Pre-clinical evaluation of this approach in murine models has demonstrated efficient anti-leukemic responses with the expression of immunomodulators, in particular GM-CSF and CD80, in irradiated cell vaccines. We have previously shown efficient insertion of GM-CSF and CD80 genes into primary human leukemia cells with the use of second and third generation self-inactivating (SIN) lentiviral vectors (Blood 96 (2000), 1317; Leukemia 16 (2002), 1645). The advantages of lentiviral vectors for development of autologous leukemia cell vaccines include: (1) efficient and consistent gene delivery; (2) high levels of transgene expression; (3) persistent expression of the transduced gene; (4) no viral proteins, as only the transduced gene is expressed; (5) no undesirable cytotoxic effects, and; (6) simplicity of use [leukemia cells are exposed to vector(s) only once]. In this work, we evaluated the insertion of the central polypurine tract and the central termination sequence into a SIN lentiviral vector encoding for GM-CSF and CD80, which significantly enhanced the transduction efficiency of primary leukemia cells and provided higher levels of GM-CSF and CD80 co-expression. We also demonstrate a methodology to deliver simultaneously a combination of immunomodulatory molecules (GM-CSF, CD80, IL-4, and CD40L) to activate different pathways of immune stimulation. Therefore, lentiviral vectors offer a simple, versatile, and reliable approach for engineering leukemic cells for use as cell vaccines.


Vaccine | 2008

Anti-tumor effect of DNA-based vaccination and dSLIM immunomodulatory molecules in mice with Ph+ acute lymphoblastic leukaemia.

Joachim Köchling; Javier Prada; Masoud Bahrami; Renata Stripecke; Karl Seeger; Günter Henze; Burghardt Wittig; Manuel Schmidt

Since the prognosis of patients with Philadelphia chromosome positive acute lymphoblastic leukaemia (Ph+ ALL) still remains poor, new relapse prevention strategies are needed. We evaluated the pre-immunization of mice with DNA-based vaccines subsequently challenged by the syngeneic Ph+ ALL cell line BM185. Ballistic transfer of minimalistic immunogenically defined gene expression (MIDGE) vectors encoding a BCR-ABLp185 fusion specific peptide or GM-CSF were used for in vivo transfection. DNA-based double stem-loop immunomodulators (dSLIM) were used as immune adjuvant. We present survival and functional data that DNA-based vaccination with BCR-ABLp185 fusion specific sequences, GM-CSF and dSLIM leads to an anti-tumor effect in mice challenged with a lethal Ph+ ALL dose and this effect depends on leukaemia-specific sequences.

Collaboration


Dive into the Renata Stripecke's collaboration.

Top Co-Authors

Avatar

Richard C. Koya

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Nori Kasahara

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald B. Kohn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra M. Levine

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dianne C. Skelton

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge