Nori Kasahara
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nori Kasahara.
Gene Therapy | 2001
Lali K. Medina-Kauwe; M Maguire; Nori Kasahara; Larry Kedes
The capsid proteins of adenovirus serotype 5 (Ad5) are key to the virus’ highly efficient cell binding and entry mechanism. In particular, the penton base plays a significant role in both viral internalization and endosome penetration. We have produced an adenovirus penton fusion protein (HerPBK10) containing moieties for DNA transport and targeted delivery to breast cancer cells. HerPBK10 binds DNA through a polylysine appendage, while the EGF-like domain of the heregulin-α1 isoform is used as the targeting ligand. This ligand binds with high affinity to HER2/3 or HER2/4 heterodimers, which are overexpressed on certain aggressive breast cancers. In addition, this ligand is rapidly internalized after binding, thus adding to the utility of heregulin for targeting. HerPBK10 binds MDA-MB-453 breast cancer cells in a receptor-specific manner, and mediates the entry of a reporter plasmid in MDA-MB-453 cells in culture. Delivery can be competed by excess heregulin peptide, thus confirming receptor specificity. Importantly, the penton segment appears to contribute significantly to enhanced delivery. Complexes containing HerPBK10 and DNA have been optimized to provide targeted gene delivery to breast cancer cells in vitro. We demonstrate that delivery can be accomplished in the presence of serum, thus suggesting a potential use for in vivo delivery.
Journal of Immunotherapy | 2003
Richard C. Koya; Nori Kasahara; Patricia M. B. Favaro; Roy Lau; Huy Q. Ta; Jeffrey S. Weber; Renata Stripecke
Dendritic cells (DCs) are being evaluated in immunization protocols to enhance immunity against infectious diseases and cancer. Interaction of T-helper cells expressing CD40 ligand (CD40L) with its cognate CD40 receptor on DCs leads to a mature DC phenotype, characterized by increased capacity of antigen presentation to cytotoxic T cells. The authors examined the ability of third-generation self-inactivating lentiviral vectors expressing CD40L to induce autonomous maturation of ex vivo expanded human monocyte-derived dendritic cells. Transduction with lentiviral vectors achieved a highly efficient gene transfer of CD40L to DCs, which correlated with phenotypic maturation as shown by the expression of immunologic relevant markers (CD83, CD80, MHCI) and secretion of IL-12, whereas DC phenotype was not affected by a control vector expressing only the green fluorescent protein marker. Addition of recombinant IFN-&ggr; to DCs at the time of CD40L transduction further enhanced IL-12 production, and when co-cultured with allogeneic and autologous CD8+ and CD4+ T cells, a potent activation was observed. Autologous responses against an HLA-A2-restricted influenza peptide (Flu-M1) and a tumor-associated antigenic peptide (gp100 210M) were significantly enhanced when CD40L transduced DCs were used as antigen-presenting cells for in vitro stimulation of CD8+ cytotoxic T lymphocytes. These results demonstrate that endogenous expression of CD40L by lentivirally transduced DCs induced their autonomous maturation to a phenotype comparable to that induced by optimal concentrations of soluble CD40L, providing a novel tool for genetic manipulation of DCs.
Human Gene Therapy | 2001
Amy H. Lin; Nori Kasahara; Wendy Wu; Renata Stripecke; Cyril L. Empig; W. French Anderson; Paula M. Cannon
The entry of retroviral vectors into cells requires two events: binding to a cell surface receptor and the subsequent fusion of viral and cellular membranes. The host range of a vector is therefore determined largely by the receptor specificity of the fusion protein contained in the outer viral envelope. Previous attempts to generate targeted retroviral vectors have included the addition of targeting ligands to the murine leukemia virus envelope protein (MuLV Env). Although such proteins frequently display modified cell-binding characteristics, the interaction with the targeted receptors fails to trigger virus-cell fusion. Here, we report the use of a binding-defective but fusion-competent hemagglutinin (HA) protein to complement the fusion defect in a chimeric MuLV Env targeted to the Flt-3 receptor. Retroviral vectors containing both proteins showed enhanced transduction of cells expressing Flt-3, which was abrogated by preincubating the target cells with soluble Flt-3 ligand. Furthermore, the fusion function of HA was absolutely required. These data demonstrate that it is possible to separate the binding and fusion events of retroviral entry, using two separate proteins, and suggest that varying the binding protein component in this scheme may allow a general strategy for targeting retroviral vectors.
Journal of Biological Chemistry | 2000
Mei Chen; Edel A. O'Toole; Matthew Muellenhoff; Elenea Medina; Nori Kasahara; David T. Woodley
Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder of skin caused by mutations in the type VII collagen gene. The lack of therapy for DEB provides an impetus to develop gene therapy strategies. However, the full-length 9-kilobase type VII collagen cDNA exceeds the cloning capacity of current viral delivery vectors. In this study, we produced a recombinant type VII minicollagen containing the intact noncollagenous domains, NC1 and NC2, and part of the central collagenous domain using stably transfected human 293 cell clones and purified large quantities of the recombinant minicollagen VII from culture media. Minicollagen VII was secreted as correctly-folded, disulfide-bonded, helical trimers resistant to protease degradation. Purified minicollagen VII bound to fibronectin, laminin-5, type I collagen, and type IV collagen. Furthermore, retroviral-mediated transduction of the minigene construct into DEB keratinocytes (in which type VII collagen was absent) resulted in persistent synthesis and secretion of a 230-kDa recombinant minicollagen VII. In comparison with parent DEB keratinocytes, the gene-corrected DEB keratinocytes demonstrated enhanced cell-substratum adhesion, increased proliferative potential, and reduced cell motility, features that reversed the DEB phenotype toward normal. We conclude that the use of the minicollagen VII may provide a strategy to correct the cellular manifestations of gene defects in DEB.
Leukemia | 2002
Richard C. Koya; Nori Kasahara; Vinod Pullarkat; Alexandra M. Levine; Renata Stripecke
Acute myeloid leukemia (AML) patients treated with available therapies achieve remission in approximately 60% of cases, but the long-term event-free survival is less than 30%. Use of immunotherapy during remission is a potential approach to increase survival. We propose to develop cell vaccines by genetic modification of AML cells with CD80, an essential T cell costimulator that is lacking in the majority of AML cases, and GM-CSF, to induce proliferation and activation of professional antigen-presenting cells. Here, we evaluated third generation selfinactivating (SIN) lentiviral vectors, which have the potential advantage of improved safety. CD80 and GM-CSF expression by these vectors was higher than that reported with second generation vectors (Stripecke et al, Blood 2000; 96: 1317–1326). In some cases, endogenous GM-CSF expression by transduced AML cells induced phenotypic changes consistent with the maturation of leukemia blasts into antigen-presenting cells. Further, in all cases studied, GM-CSF expression was associated with higher proliferation and cell viability. Allogeneic and autologous mixed lymphocyte reactions performed with transduced irradiated AML cells expressing CD80 and/or GM-CSF demonstrated that expression of either transgene enhanced T cell activation. These pre-clinical data demonstrate the potential feasibility of third generation SIN vectors for use in AML immunotherapy.
Gene Therapy | 2001
Lali K. Medina-Kauwe; Nori Kasahara; Larry Kedes
This study describes the development of 3PO, a nonviral, protein-based gene delivery vector which utilizes the highly evolved cell-binding, cell-entry and intracellular transport functions of the adenovirus serotype 5 (Ad5) capsid penton protein. A penton fusion protein containing a polylysine sequence was produced by recombinant methods and tested for gene delivery capability. As the protein itself is known to bind integrins through a conserved consensus motif, the penton inherently possesses the ability to bind and enter cells through receptor-mediated internalization. The ability to lyse the cellular endosome encapsulating internalized receptors is also attributed to the penton. The recombinant protein gains the additional function of DNA binding and transport with the appendage of a polylysine motif. This protein retains the ability to form pentamers and mediates delivery of a reporter gene to cultured cells. Interference by oligopeptides bearing the integrin binding motif suggests that delivery is mediated specifically through integrin receptor binding and internalization. The addition of protamine to penton–DNA complexes allows gene delivery in the presence of serum.
Blood Cells Molecules and Diseases | 2003
Renata Stripecke; Richard C. Koya; Huy Q. Ta; Nori Kasahara; Alexandra M. Levine
Our goal is to develop cell vaccines against leukemia cells, genetically modified to express molecules with potent immune-stimulatory capacities. Pre-clinical evaluation of this approach in murine models has demonstrated efficient anti-leukemic responses with the expression of immunomodulators, in particular GM-CSF and CD80, in irradiated cell vaccines. We have previously shown efficient insertion of GM-CSF and CD80 genes into primary human leukemia cells with the use of second and third generation self-inactivating (SIN) lentiviral vectors (Blood 96 (2000), 1317; Leukemia 16 (2002), 1645). The advantages of lentiviral vectors for development of autologous leukemia cell vaccines include: (1) efficient and consistent gene delivery; (2) high levels of transgene expression; (3) persistent expression of the transduced gene; (4) no viral proteins, as only the transduced gene is expressed; (5) no undesirable cytotoxic effects, and; (6) simplicity of use [leukemia cells are exposed to vector(s) only once]. In this work, we evaluated the insertion of the central polypurine tract and the central termination sequence into a SIN lentiviral vector encoding for GM-CSF and CD80, which significantly enhanced the transduction efficiency of primary leukemia cells and provided higher levels of GM-CSF and CD80 co-expression. We also demonstrate a methodology to deliver simultaneously a combination of immunomodulatory molecules (GM-CSF, CD80, IL-4, and CD40L) to activate different pathways of immune stimulation. Therefore, lentiviral vectors offer a simple, versatile, and reliable approach for engineering leukemic cells for use as cell vaccines.
Urologia Internationalis | 2007
Maurizio Buscarini; Marcus L. Quek; Susan Gilliam-Hegarich; Nori Kasahara; Bernard H. Bochner
Objective: The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the αv-based integrins, specifically αvβ3 and αvβ5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, αvβ3, and αvβ5) in normal and cancerous human bladders. Material and Methods: Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins αvβ3 and αvβ5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. Results:Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins αvβ3 and αvβ5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for αvβ3 and for αvβ5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of αvβ5, in which all tumor cells exhibited minimal or no staining. Conclusions: The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both αvβ3 and αvβ5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and αv-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment.
Journal of Molecular and Cellular Cardiology | 1999
Tsuyoshi Sakoda; Nori Kasahara; Yasuo Hamamori; Larry Kedes
Journal of Biological Chemistry | 2000
Elisheva Smith; Rebecca A. Redman; Christopher R. Logg; Gerhard A. Coetzee; Nori Kasahara; Baruch Frenkel