Renate Kania
Heidelberg Institute for Theoretical Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renate Kania.
Nucleic Acids Research | 2012
Ulrike Wittig; Renate Kania; Martin Golebiewski; Maja Rey; Lei Shi; Lenneke Jong; Enkhjargal Algaa; Andreas Weidemann; Heidrun Sauer-Danzwith; Saqib Mir; Olga Krebs; Meik Bittkowski; Isabel Rojas; Wolfgang Müller
SABIO-RK (http://sabio.h-its.org/) is a web-accessible database storing comprehensive information about biochemical reactions and their kinetic properties. SABIO-RK offers standardized data manually extracted from the literature and data directly submitted from lab experiments. The database content includes kinetic parameters in relation to biochemical reactions and their biological sources with no restriction on any particular set of organisms. Additionally, kinetic rate laws and corresponding equations as well as experimental conditions are represented. All the data are manually curated and annotated by biological experts, supported by automated consistency checks. SABIO-RK can be accessed via web-based user interfaces or automatically via web services that allow direct data access by other tools. Both interfaces support the export of the data together with its annotations in SBML (Systems Biology Markup Language), e.g. for import in modelling tools.
data integration in the life sciences | 2006
Ulrike Wittig; Martin Golebiewski; Renate Kania; Olga Krebs; Saqib Mir; Andreas Weidemann; Stefanie Anstein; Jasmin Saric; Isabel Rojas
Simulating networks of biochemical reactions require reliable kinetic data. In order to facilitate the access to such kinetic data we have developed SABIO-RK, a curated database with information about biochemical reactions and their kinetic properties. The data are manually extracted from literature and verified by curators, concerning standards, formats and controlled vocabularies. This process is supported by tools in a semi-automatic manner. SABIO-RK contains and merges information about reactions such as reactants and modifiers, organism, tissue and cellular location, as well as the kinetic properties of the reactions. The type of the kinetic mechanism, modes of inhibition or activation, and corresponding rate equations are presented together with their parameters and measured values, specifying the experimental conditions under which these were determined. Links to other databases enable the user to gather further information and to refer to the original publication. Information about reactions and their kinetic data can be exported to an SBML file, allowing users to employ the information as the basis for their simulation models.
BMC Systems Biology | 2007
Isabel Rojas; Martin Golebiewski; Renate Kania; Olga Krebs; Saqib Mir; Andreas Weidemann; Ulrike Wittig
Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics), a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.
FEBS Journal | 2010
Neil Swainston; Martin Golebiewski; Hanan L. Messiha; Naglis Malys; Renate Kania; Sylvestre Kengne; Olga Krebs; Saqib Mir; Heidrun Sauer-Danzwith; Kieran Smallbone; Andreas Weidemann; Ulrike Wittig; Douglas B. Kell; Pedro Mendes; Wolfgang Müller; Norman W. Paton; Isabel Rojas
A limited number of publicly available resources provide access to enzyme kinetic parameters. These have been compiled through manual data mining of published papers, not from the original, raw experimental data from which the parameters were calculated. This is largely due to the lack of software or standards to support the capture, analysis, storage and dissemination of such experimental data. Introduced here is an integrative system to manage experimental enzyme kinetics data from instrument to browser. The approach is based on two interrelated databases: the existing SABIO‐RK database, containing kinetic data and corresponding metadata, and the newly introduced experimental raw data repository, MeMo‐RK. Both systems are publicly available by web browser and web service interfaces and are configurable to ensure privacy of unpublished data. Users of this system are provided with the ability to view both kinetic parameters and the experimental raw data from which they are calculated, providing increased confidence in the data. A data analysis and submission tool, the kineticswizard, has been developed to allow the experimentalist to perform data collection, analysis and submission to both data resources. The system is designed to be extensible, allowing integration with other manufacturer instruments covering a range of analytical techniques.
Molecular Systems Biology | 2015
Natalie Stanford; Katherine Wolstencroft; Martin Golebiewski; Renate Kania; Nick Juty; Christopher Tomlinson; Stuart Owen; Sarah Butcher; Henning Hermjakob; Nicolas Le Novère; Wolfgang Mueller; Jacky L. Snoep; Carole A. Goble
A recent community survey conducted by Infrastructure for Systems Biology Europe (ISBE) informs requirements for developing an efficient infrastructure for systems biology standards, data and model management.
FEBS Journal | 2014
Ulrike Wittig; Maja Rey; Renate Kania; Meik Bittkowski; Lei Shi; Martin Golebiewski; Andreas Weidemann; Wolfgang Müller; Isabel Rojas
The scientific literature contains a tremendous amount of kinetic data describing the dynamic behaviour of biochemical reactions over time. These data are needed for computational modelling to create models of biochemical reaction networks and to obtain a better understanding of the processes in living cells. To extract the knowledge from the literature, biocurators are required to understand a paper and interpret the data. For modellers, as well as experimentalists, this process is very time consuming because the information is distributed across the publication and, in most cases, is insufficiently structured and often described without standard terminology. In recent years, biological databases for different data types have been developed. The advantages of these databases lie in their unified structure, searchability and the potential for augmented analysis by software, which supports the modelling process. We have developed the SABIO‐RK database for biochemical reaction kinetics. In the present review, we describe the challenges for database developers and curators, beginning with an analysis of relevant publications up to the export of database information in a standardized format. The aim of the present review is to draw the experimentalists attention to the problem (from a data integration point of view) of incompletely and imprecisely written publications. We describe how to lower the barrier to curators and improve this situation. At the same time, we are aware that curating experimental data takes time. There is a community concerned with making the task of publishing data with the proper structure and annotation to ontologies much easier. In this respect, we highlight some useful initiatives and tools.
Database | 2012
Pascale Gaudet; Cecilia N. Arighi; Frederic B. Bastian; Alex Bateman; Judith A. Blake; Michael J. Cherry; Peter D’Eustachio; Robert D. Finn; Michelle G. Giglio; Lynette Hirschman; Renate Kania; William Klimke; María Martín; Ilene Karsch-Mizrachi; Monica Munoz-Torres; Darren A. Natale; Claire O’Donovan; Francis Ouellette; Kim D. Pruitt; Marc Robinson-Rechavi; Susanna-Assunta Sansone; Paul N. Schofield; Granger Sutton; Kimberly Van Auken; Sona Vasudevan; Cathy H. Wu; Jasmine Young; Raja Mazumder
The 5th International Biocuration Conference brought together over 300 scientists to exchange on their work, as well as discuss issues relevant to the International Society for Biocuration’s (ISB) mission. Recurring themes this year included the creation and promotion of gold standards, the need for more ontologies, and more formal interactions with journals. The conference is an essential part of the ISBs goal to support exchanges among members of the biocuration community. Next years conference will be held in Cambridge, UK, from 7 to 10 April 2013. In the meanwhile, the ISB website provides information about the societys activities (http://biocurator.org), as well as related events of interest.
Journal of Integrative Bioinformatics | 2007
Olga Krebs; Martin Golebiewski; Renate Kania; Saqib Mir; Jasmin Saric; Andreas Weidemann; Ulrike Wittig; Isabel Rojas
Abstract Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics), a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.
BMC Systems Biology | 2007
Martin Golebiewski; Saqib Mir; Renate Kania; Olga Krebs; Andreas Weidemann; Ulrike Wittig; Isabel Rojas
Systems biology deals with analyzing and predicting the behavior of complex biological systems like cells, organisms or even whole ecosystems. This requires qualitative information about the interplay of genes, proteins, chemical compounds and biochemical reactions, but also calls for quantitative data describing the dynamics of these networks. These data have to be collected, systematically structured and made accessible for the set-up of biochemical model simulations.
Datenbank-spektrum | 2017
Wolfgang Müller; Meik Bittkowski; Martin Golebiewski; Renate Kania; Maja Rey; Andreas Weidemann; Ulrike Wittig
ZusammenfassungSABIO-RK ist eine Datenbank, in der Spezialisten aus der Systembiologie Daten aus biochemischen Publikationen suchen, finden, und in geeigneten Formaten extrahieren können. Der Artikel beschreibt, wie Kuratierung durch Experten, standardisierte Struktur, flexible Suche und einfacher Datenexport ineinandergreifen, um den Informationsbedarf der Nutzer zu befriedigen.