Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renaud Marty is active.

Publication


Featured researches published by Renaud Marty.


Scientific Reports | 2013

Surface Plasmon Damping Quantified with an Electron Nanoprobe

Michel Bosman; Enyi Ye; Shu Fen Tan; Christian A. Nijhuis; Joel K. W. Yang; Renaud Marty; Adnen Mlayah; Arnaud Arbouet; Christian Girard; Ming-Yong Han

Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm.


Nature Communications | 2015

Coupling of individual quantum emitters to channel plasmons

Esteban Bermúdez-Ureña; Carlos Gonzalez-Ballestero; Michael Geiselmann; Renaud Marty; Ilya P. Radko; Tobias Holmgaard; Yury Alaverdyan; Esteban Moreno; F. J. García-Vidal; Sergey I. Bozhevolnyi; Romain Quidant

Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.


ACS Nano | 2012

Plasmonic Nanoparticle Networks for Light and Heat Concentration

Audrey Sanchot; Guillaume Baffou; Renaud Marty; Arnaud Arbouet; Romain Quidant; Christian Girard; Erik Dujardin

Self-assembled plasmonic nanoparticle networks (PNN) composed of chains of 12 nm diameter crystalline gold nanoparticles exhibit a longitudinally coupled plasmon mode centered at 700 nm. We have exploited this longitudinal absorption band to efficiently confine light fields and concentrate heat sources in the close vicinity of these plasmonic chain networks. The mapping of the two phenomena on the same superstructures was performed by combining two-photon luminescence and fluorescence polarization anisotropy imaging techniques. Besides the light and heat concentration, we show experimentally that the planar spatial distribution of optical field intensity can be simply modulated by controlling the linear polarization of the incident optical excitation. On the contrary, the heat production, which is obtained here by exciting the structures within the optically transparent window of biological tissues, is evenly spread over the entire PNN. This contrasts with the usual case of localized heating in continuous nanowires, thus opening opportunities for these networks in light-induced hyperthermia applications. Furthermore, we propose a unified theoretical framework to account for both the nonlinear optical and thermal near-fields around PNN. The associated numerical simulations, based on a Greens function formalism, are in excellent agreement with the experimental images. This formalism therefore provides a versatile tool for the accurate engineering of optical and thermodynamical properties of complex plasmonic colloidal architectures.


Nano Letters | 2011

Damping of the acoustic vibrations of individual gold nanoparticles.

Renaud Marty; Arnaud Arbouet; Christian Girard; Adnen Mlayah; Vincent Paillard; Vivian Kaixin Lin; Siew Lang Teo; S. Tripathy

In this letter, the ultrafast vibrational dynamics of individual gold nanorings has been investigated by femtosecond transient absorption spectroscopy. Two acoustic vibration modes have been detected and identified. The influence of the mechanical coupling at the nanoparticle/substrate interface on the acoustic vibrations of the nano-objects is discussed. Moreover, by changing the environment of the nanoring, we provide a clear evidence of the impact of the surrounding medium on the damping of the acoustic vibrations. Such results are reported here for the first time on individual nanoparticles. This work points out a new sensing method based on the sensitivity of the acoustic vibration damping to the surrounding medium.


Nano Letters | 2011

Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers.

S. Tripathy; Renaud Marty; Vivian Kaixin Lin; Siew Lang Teo; Enyi Ye; Arnaud Arbouet; Lucien Saviot; Christian Girard; Ming-Yong Han; Adnen Mlayah

This work is devoted to the fundamental understanding of the interaction between acoustic vibrations and surface plasmons in metallic nano-objects. The acoustoplasmonic properties of coupled spherical gold nanoparticles and nanodisk trimers are investigated experimentally by optical transmission measurements and resonant Raman scattering experiments. For excitation close to resonance with the localized surface plasmons of the nanodisk trimers, we are able to detect several intense Raman bands generated by the spherical gold nanoparticles. On the basis of both vibrational dynamics calculations and Raman selection rules, the measured Raman bands are assigned to fundamental and overtones of the quadrupolar and breathing vibration modes of the spherical gold nanoparticles. Simulations of the electric near-field intensity maps performed at the Raman probe wavelengths showed strong localization of the optical energy in the vicinity of the nanodisk trimers, thus corroborating the role of the interaction between the acoustic vibrations of the spherical nanoparticles and the surface plasmons of the nanodisk trimers. Acoustic phonons surface enhanced Raman scattering is here demonstrated for the first time for such coupled plasmonic systems. This work paves the way to surface plasmon engineering for sensing the vibrational properties of nanoparticles.


Optics Express | 2010

Charge distribution induced inside complex plasmonic nanoparticles

Renaud Marty; Guillaume Baffou; Arnaud Arbouet; Christian Girard; Romain Quidant

We developed a versatile numerical technique to compute the three-dimensional charge distribution inside plasmonic nanoparticles. This method can be easily applied to investigate the charge distribution inside arbitrarily complex plasmonic nanostructures and to identify the nature of the multipolar plasmon modes involved at plasmonic resonances. Its ability to unravel the physical origin of plasmonic spectral features is demonstrated in the case of a single gold nanotriangle and of a gold nano-antenna. Finally, we show how the volume charge distribution can be used to define and compute the first terms of the multipolar expansion.


Optics Express | 2011

Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter

Nicolas Large; Javier Aizpurua; Vivian Kaixin Lin; Siew Lang Teo; Renaud Marty; S. Tripathy; Adnen Mlayah

Using numerical simulations, we demonstrate that fine shape details of gold nanoring-disks are responsible for significant modifications of their localized surface plasmon properties. The numerical results are supported by optical transmission measurements and by atomic force microscopy. In particular, we found that, depending on the ring wall sharpness, the spectral shift of the ring-like localized surface plasmon resonance can be as large as few hundred nanometers. These results shed the light on the strong sensitivity of the surface plasmon properties to very small deviations of the ring and disk shapes from the ideally flat surfaces and sharp edges. This effect is particularly important for tailoring the surface plasmon properties of metallic nanostructures presenting edges and wedges for applications in bio- and chemical sensing and for enhancement of light scattering.


Nano Letters | 2014

Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers

Michael Geiselmann; Renaud Marty; Jan Renger; F. Javier García de Abajo; Romain Quidant

Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.


Nature Physics | 2013

Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre

Michael Geiselmann; Renaud Marty; F. Javier García de Abajo; Romain Quidant

The intensity of optically-pumped fluorescence generated from a single atomic defect in diamond can be reduced by 80% in just 100 ns by applying infrared laser light. This result demonstrates the possibility of using these so-called nitrogen–vacancy centres to create optical switches that operate at room temperature.


Optics Express | 2010

Gold nanoring trimers: a versatile structure for infrared sensing

Siew Lang Teo; Vivian Kaixin Lin; Renaud Marty; Nicolas Large; Esther Alarcon Llado; Arnaud Arbouet; Christian Girard; Javier Aizpurua; S. Tripathy; Adnen Mlayah

In this work we report on the observation of surface plasmon properties of periodic arrays of gold nanoring trimers fabricated by electron beam lithography. It is shown that the localized surface plasmon resonances of such gold ring trimers occur in the infrared spectral region and are strongly influenced by the nanoring geometry and their relative positions. Based on numerical simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to surface plasmon states arising from the strong intra-trimer electromagnetic interaction. We show that the nanoring trimer configuration allows for generating infrared surface plasmon resonances associated with strongly localized electromagnetic energy, thus providing plasmonic nanoresonators well-suited for sensing and surface enhanced near-infrared Raman spectroscopy.

Collaboration


Dive into the Renaud Marty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Dujardin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Geiselmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge