Renaud Vincentelli
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renaud Vincentelli.
Cell | 2013
Arttu Jolma; Jian Yan; Thomas Whitington; Jarkko Toivonen; Kazuhiro R. Nitta; Pasi Rastas; Ekaterina Morgunova; Martin Enge; Mikko Taipale; Gong-Hong Wei; Kimmo Palin; Juan M. Vaquerizas; Renaud Vincentelli; Nicholas M. Luscombe; Timothy R. Hughes; Patrick Lemaire; Esko Ukkonen; Teemu Kivioja; Jussi Taipale
Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.
Protein Science | 2009
Renaud Vincentelli; Stéphane Canaan; Valérie Campanacci; Christel Valencia; Damien Maurin; Frédéric Frassinetti; Loréna Scappucini-Calvo; Yves Bourne; Christian Cambillau; Christophe Bignon
One of the main stumbling blocks encountered when attempting to express foreign proteins in Escherichia coli is the occurrence of amorphous aggregates of misfolded proteins, called inclusion bodies (IB). Developing efficient protein native structure recovery procedures based on IB refolding is therefore an important challenge. Unfortunately, there is no “universal” refolding buffer: Experience shows that refolding buffer composition varies from one protein to another. In addition, the methods developed so far for finding a suitable refolding buffer suffer from a number of weaknesses. These include the small number of refolding formulations, which often leads to negative results, solubility assays incompatible with high‐throughput, and experiment formatting not suitable for automation. To overcome these problems, it was proposed in the present study to address some of these limitations. This resulted in the first completely automated IB refolding screening procedure to be developed using a 96‐well format. The 96 refolding buffers were obtained using a fractional factorial approach. The screening procedure is potentially applicable to any nonmembrane protein, and was validated with 24 proteins in the framework of two Structural Genomics projects. The tests used for this purpose included the use of quality control methods such as circular dichroism, dynamic light scattering, and crystallogenesis. Out of the 24 proteins, 17 remained soluble in at least one of the 96 refolding buffers, 15 passed large‐scale purification tests, and five gave crystals.
Human Molecular Genetics | 2008
Barbara Royer-Zemmour; Magali Ponsole-Lenfant; Hyam Gara; Patrice Roll; Christian Lévêque; Annick Massacrier; Géraldine Ferracci; Jennifer Cillario; Andrée Robaglia-Schlupp; Renaud Vincentelli; Pierre Cau; Pierre Szepetowski
Mutations in SRPX2 (Sushi-Repeat Protein, X-linked 2) cause rolandic epilepsy with speech impairment (RESDX syndrome) or with altered development of the speech cortex (bilateral perisylvian polymicrogyria). The physiological roles of SRPX2 remain unknown to date. One way to infer the function of SRPX2 relies on the identification of the as yet unknown SRPX2 protein partners. Using a combination of interactome approaches including yeast two-hybrid screening, co-immunoprecipitation experiments, cell surface binding and surface plasmon resonance (SPR), we show that SRPX2 is a ligand for uPAR, the urokinase-type plasminogen activator (uPA) receptor. Previous studies have shown that uPAR(-/-) knock-out mice exhibited enhanced susceptibility to epileptic seizures and had brain cortical anomalies consistent with altered neuronal migration and maturation, all features that are reminiscent to the phenotypes caused by SRPX2 mutations. SPR analysis indicated that the p.Y72S mutation associated with rolandic epilepsy and perisylvian polymicrogyria, led to a 5.8-fold gain-of-affinity of SRPX2 with uPAR. uPAR is a crucial component of the extracellular plasminogen proteolysis system; two more SRPX2 partners identified here, the cysteine protease cathepsin B (CTSB) and the metalloproteinase ADAMTS4, are also components of the extracellular proteolysis machinery and CTSB is a well-known activator of uPA. The identification of functionally related SRPX2 partners provides the first and exciting insights into the possible role of SRPX2 in the brain, and suggests that a network of SRPX2-interacting proteins classically involved in the proteolytic remodeling of the extracellular matrix and including uPAR participates in the functioning, in the development and in disorders of the speech cortex.
Acta Crystallographica Section D-biological Crystallography | 2002
Gerlind Sulzenbacher; Arnaud Gruez; Véronique Roig-Zamboni; Silvia Spinelli; Christel Valencia; Fabienne Pagot; Renaud Vincentelli; Christophe Bignon; Aurelia Salomoni; Sacha Grisel; Damien Maurin; Céline Huyghe; Kent Johansson; Alice Grassick; Alain Roussel; Yves Bourne; Sophie Perrier; Linda Miallau; Phillippe Cantau; Eric Blanc; Michel Genevois; Alain Grossi; André Zenatti; Valérie Campanacci; Christian Cambillau
The first results of a medium-scale structural genomics program clearly demonstrate the value of using a medium-throughput crystallization approach based on a two-step procedure: a large screening step employing robotics, followed by manual or automated optimization of the crystallization conditions. The structural genomics program was based on cloning in the Gateway vectors pDEST17, introducing a long 21-residue tail at the N-terminus. So far, this tail has not appeared to hamper crystallization. In ten months, 25 proteins were subjected to crystallization; 13 yielded crystals, of which ten led to usable data sets and five to structures. Furthermore, the results using a robot dispensing 50-200 nl drops indicate that smaller protein samples can be used for crystallization. These still partial results might indicate present and future directions for those who have to make crucial choices concerning their crystallization platform in structural genomics programs.
Methods | 2011
Renaud Vincentelli; Agnès Cimino; Arie Geerlof; Atsushi Kubo; Yutaka Satou; Christian Cambillau
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, to obtain milligrams of soluble proteins is still challenging since many proteins are expressed in an insoluble form without optimization. Therefore when working with tens of proteins or protein domains it is recommended that high-throughput expression screening at a small scale (1-4ml of culture) is carried out to identify the optimal conditions for soluble protein production. Once determined, these culture conditions can be applied at a large scale to produce sufficient protein for structural or functional studies. We describe a procedure that has enabled the systematic screening of culture conditions or fusion-tags on hundreds of cultures per week. The analysis of the optimal conditions for the soluble production of these proteins helped us to design a simple and efficient protocol for soluble protein expression screening. This protocol has since been used on hundreds of proteins and is illustrated with the genome wide scale production of proteins containing the DNA binding domains of Ciona intestinalis.
PLOS Pathogens | 2011
Onya Opota; Isabelle Vallet-Gely; Renaud Vincentelli; Christine Kellenberger; Ioan Iacovache; Manuel Rodrigo Gonzalez; Alain Roussel; Françoise Gisou van der Goot; Bruno Lemaitre
Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.
EMBO Reports | 2011
Nada Basbous; Franck Coste; Philippe Leone; Renaud Vincentelli; Julien Royet; Christine Kellenberger; Alain Roussel
The peptidoglycan (PGN)‐recognition protein LF (PGRP‐LF) is a specific negative regulator of the immune deficiency (Imd) pathway in Drosophila. We determine the crystal structure of the two PGRP domains constituting the ectodomain of PGRP‐LF at 1.72 and 1.94 Å resolution. The structures show that the LFz and LFw domains do not have a PGN‐docking groove that is found in other PGRP domains, and they cannot directly interact with PGN, as confirmed by biochemical‐binding assays. By using surface plasmon resonance analysis, we show that the PGRP‐LF ectodomain interacts with the PGRP‐LCx ectodomain in the absence and presence of tracheal cytotoxin. Our results suggest a mechanism for downregulation of the Imd pathway on the basis of the competition between PRGP‐LCa and PGRP‐LF to bind to PGRP‐LCx.
PLOS ONE | 2011
Gilles Audoly; Renaud Vincentelli; Sophie Edouard; Kalliopi Georgiades; Oleg Mediannikov; Gregory Gimenez; Cristina Socolovschi; Jean-Louis Mege; Christian Cambillau; Didier Raoult
Rickettsia are intracellular bacteria typically associated with arthropods that can be transmitted to humans by infected vectors. Rickettsia spp. can cause mild to severe human disease with a possible protection effect of corticosteroids when antibiotic treatments are initiated. We identified laterally transferred toxin-antitoxin (TA) genetic elements, including vapB/C, in several Rickettsia genomes and showed that they are functional in bacteria and eukaryotic cells. We also generated a plaque assay to monitor the formation of lytic plaques over time and demonstrated that chloramphenicol accelerates host cell lysis of vapB/C-containing Rickettsia. Whole-genome expression, TUNEL and FISH assays on the infected cells following exposure to the antibiotic revealed early apoptosis of host cells, which was linked to over-transcription of bacterial vapB/C operons and subsequent cytoplasmic VapC toxin release. VapC that is expressed in Escherichia coli and Saccharomyces cerevisiae or microinjected into mammalian cells is toxic through RNase activity and is prevented by dexamethasone. This study provides the first biological evidence that toxin–antitoxin elements act as pathogenic factors in bacterial host cells, confirming comparative genomic evidence of their role in bacterial pathogenicity. Our results suggest that early mortality following antibiotic treatment of some bacterial infections can be prevented by administration of dexamethasone.
Nucleic Acids Research | 2012
María J. Maté; Renaud Vincentelli; Nicolas Foos; Didier Raoult; Christian Cambillau; Miguel Ortiz-Lombardía
Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called ‘addiction modules’, have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin β-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin β-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription.
Acta Crystallographica Section D-biological Crystallography | 2011
Pierre Petit; Mathias Antoine; Gilles Ferry; Jean A. Boutin; Amandine Lagarde; Laure Gluais; Renaud Vincentelli; Laurent Vuillard
Glucokinase (GK) catalyses the formation of glucose 6-phosphate from glucose and ATP. A specific feature of GK amongst hexokinases is that it can cycle between active and inactive conformations as a function of glucose concentration, resulting in a unique positive kinetic cooperativity with glucose, which turns GK into a unique key sensor of glucose metabolism, notably in the pancreas. GK is a target of antidiabetic drugs aimed at the activation of GK activity, leading to insulin secretion. Here, the first structures of a GK-glucose complex without activator, of GK-glucose-AMP-PNP and of GK-glucose-AMP-PNP with a bound activator are reported. All these structures are extremely similar, thus demonstrating that binding of GK activators does not result in conformational changes of the active protein but in stabilization of the active form of GK.