René de Coo
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René de Coo.
American Journal of Human Genetics | 2007
Gavin Hudson; Valerio Carelli; Liesbeth Spruijt; Mike Gerards; Catherine Mowbray; Alessandro Achilli; Angela Pyle; Joanna L. Elson; Neil Howell; Chiara La Morgia; Maria Lucia Valentino; Kirsi Huoponen; Marja-Liisa Savontaus; Eeva Nikoskelainen; Alfredo A. Sadun; Solange Rios Salomão; Rubens Belfort; Philip G. Griffiths; Patrick Yu Wai Man; René de Coo; Rita Horvath; Massimo Zeviani; Hubert J T Smeets; Antonio Torroni; Patrick F. Chinnery
Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the pathophysiology of the disorder. Both the 11778G-->A and 14484T-->C LHON mutations are preferentially found on a specific mtDNA genetic background, but 3460G-->A is not. However, there is no clear evidence that any background influences clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show that the risk of visual failure is greater when the 11778G-->A or 14484T-->C mutations are present in specific subgroups of haplogroup J (J2 for 11778G-->A and J1 for 14484T-->C) and when the 3460G-->A mutation is present in haplogroup K. By contrast, the risk of visual failure is significantly less when 11778G-->A occurs in haplogroup H. Substitutions on MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked effect on the expression of an ostensibly monogenic mtDNA disorder.
American Journal of Human Genetics | 2005
Alice S. Brooks; Aida M. Bertoli-Avella; G Burzynski; Guido J. Breedveld; Jan Osinga; Ludolf G. Boven; Jane A. Hurst; Grazia M.S. Mancini; Maarten H. Lequin; René de Coo; Ivana Matera; Esther de Graaff; Carel Meijers; Patrick J. Willems; Dick Tibboel; Ben A. Oostra; Robert M. W. Hofstra
We identified, by homozygosity mapping, a novel locus on 10q21.3-q22.1 for Goldberg-Shprintzen syndrome (GOSHS) in a consanguineous Moroccan family. Phenotypic features of GOSHS in this inbred family included microcephaly and mental retardation, which are both central nervous system defects, as well as Hirschsprung disease, an enteric nervous system defect. Furthermore, since bilateral generalized polymicogyria was diagnosed in all patients in this family, this feature might also be considered a key feature of the syndrome. We demonstrate that homozygous nonsense mutations in KIAA1279 at 10q22.1, encoding a protein with two tetratrico peptide repeats, underlie this syndromic form of Hirschsprung disease and generalized polymicrogyria, establishing the importance of KIAA1279 in both enteric and central nervous system development.
Brain | 2013
Mike Gerards; R. Kamps; Jo van Oevelen; Iris B W Boesten; Eveline Jongen; Bart de Koning; H.R. Scholte; Isabel de Angst; Kees Schoonderwoerd; Ilham Ratbi; Wouter Coppieters; Latifa Karim; René de Coo; Bianca van den Bosch; Hubert J.M. Smeets
Leigh syndrome is an early onset, often fatal progressive neurodegenerative disorder caused by mutations in the mitochondrial or nuclear DNA. Until now, mutations in more than 35 genes have been reported to cause Leigh syndrome, indicating an extreme genetic heterogeneity for this disorder, but still only explaining part of the cases. The possibility of whole exome sequencing enables not only mutation detection in known candidate genes, but also the identification of new genes associated with Leigh syndrome in small families and isolated cases. Exome sequencing was combined with homozygosity mapping to identify the genetic defect in a Moroccan family with fatal Leigh syndrome in early childhood and specific magnetic resonance imaging abnormalities in the brain. We detected a homozygous nonsense mutation (c.20C>A; p.Ser7Ter) in the thiamine transporter SLC19A3. In vivo overexpression of wild-type SLC19A3 showed an increased thiamine uptake, whereas overexpression of mutant SLC19A3 did not, confirming that the mutation results in an absent or non-functional protein. Seventeen additional patients with Leigh syndrome were screened for mutations in SLC19A3 using conventional Sanger sequencing. Two unrelated patients, both from Moroccan origin and one from consanguineous parents, were homozygous for the same p.Ser7Ter mutation. One of these patients showed the same MRI abnormalities as the patients from the first family. Strikingly, patients receiving thiamine had an improved life-expectancy. One patient in the third family deteriorated upon interruption of the thiamine treatment and recovered after reinitiating. Although unrelated, all patients came from the province Al Hoceima in Northern Morocco. Based on the recombination events the mutation was estimated to have occurred 1250-1750 years ago. Our data shows that SLC19A3 is a new candidate for mutation screening in patients with Leigh syndrome, who might benefit from high doses of thiamine and/or biotin. Especially, Moroccan patients with Leigh syndrome should be tested for the c.20C>A founder mutation in SLC19A3.
Mitochondrion | 2010
Mike Gerards; Bianca van den Bosch; Chantal Calis; Kees Schoonderwoerd; Klaartje van Engelen; Marina A. J. Tijssen; René de Coo; Anneke J. van der Kooi; H.J.M. Smeets
Hereditary ataxias are genetic disorders characterized by uncoordinated gait and often poor coordination of hands, speech, and eye movements. Frequently, atrophy of the cerebellum occurs. Many ataxias are autosomal dominant, but autosomal recessive (AR) disease occurs as well. Homozygosity mapping in a consanguineous family with three affected children with progressive cerebellar ataxia and atrophy revealed a candidate locus on chromosome 1, containing the CABC1/ADCK3 (the chaperone, ABC1 activity of bc1 complex homologue) gene. CABC1/ADCK3 is the homologue of the yeast Coq8 gene, which is involved in the ubiquinone biosynthesis pathway. Mutation analysis of this gene showed a homozygous nonsense mutation (c.1042C>T, p.R348X). Eight additional patients with AR cerebellar ataxia and atrophy were screened for mutations in the CABC1/ADCK3 gene. One patient was compound heterozygous for the same c.1042C>T mutation and a second nonsense mutation (c.1136T>A, p.L379X). Both mutations created a premature stop codon, triggering nonsense mediated mRNA decay as the pathogenic mechanism. We found no evidence of a Dutch founder for the c.1042C>T mutation in AR ataxia. We report here the first nonsense mutations in CABC1 that most likely lead to complete absence of a functional CABC1 protein. Our results indicate that CABC1 is an important candidate for mutation analysis in progressive cerebellar ataxia and atrophy on MRI to identify those patients, who may benefit from CoQ10 treatment.
Epilepsia | 2003
Petra M.C. Callenbach; Arn M. J. M. van den Maagdenberg; Jouke J. Hottenga; Eelke H. Van Den Boogerd; René de Coo; Dick Lindhout; Rune R. Frants; Lodewijk A. Sandkuijl; Oebele F. Brouwer
Summary:u2002 Purpose: Three forms of idiopathic partial epilepsy with autosomal dominant inheritance have been described: (a) autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE); (b) autosomal dominant lateral temporal epilepsy (ADLTE) or partial epilepsy with auditory features (ADPEAF); and (c) familial partial epilepsy with variable foci (FPEVF). Here we describe linkage analysis in a Dutch four‐generation family with epilepsy fulfilling criteria of both ADNFLE and FPEVF.
Journal of Clinical Investigation | 1999
Vincent Procaccio; Bénédicte Mousson; Réjane Beugnot; Hervé Duborjal; François Feillet; Guy Putet; Isabelle Pignot-Paintrand; Anne Lombès; René de Coo; H.J.M. Smeets; Joël Lunardi; Jean-Paul Issartel
We have studied complex I (NADH-ubiquinone reductase) defects of the mitochondrial respiratory chain in 2 infants who died in the neonatal period from 2 different neurological forms of severe neonatal lactic acidosis. Specific and marked decrease in complex I activity was documented in muscle, liver, and cultured skin fibroblasts. Biochemical characterization and study of the genetic origin of this defect were performed using cultured fibroblasts. Immunodetection of 6 nuclear DNA-encoded (20, 23, 24, 30, 49, and 51 kDa) and 1 mitochondrial DNA-encoded (ND1) complex I subunits in fibroblast mitochondria revealed 2 distinct patterns. In 1 patient, complex I contained reduced amounts of the 24- and 51-kDa subunits and normal amounts of all the other investigated subunits. In the second patient, amounts of all the investigated subunits were severely decreased. The data suggest partial or extensive impairment of complex I assembly in both patients. Cell fusion experiments between 143B206 rho degrees cells, fully depleted of mitochondrial DNA, and fibroblasts from both patients led to phenotypic complementation of the complex I defects in mitochondria of the resulting cybrid cells. These results indicate that the complex I defects in the 2 reported cases are due to nuclear gene mutations.
Genetics in Medicine | 2015
Marije Meuwissen; Dicky Halley; Liesbeth S. Smit; Maarten H. Lequin; Jan Maarten Cobben; René de Coo; Jeske van Harssel; Suzanne C.E.H. Sallevelt; Gwendolyn Woldringh; Marjo S. van der Knaap; Linda S. de Vries; Grazia M.S. Mancini
Two proα1(IV) chains, encoded by COL4A1, form trimers that contain, in addition, a proα2(IV) chain encoded by COL4A2 and are the major component of the basement membrane in many tissues. Since 2005, COL4A1 mutations have been known as an autosomal dominant cause of hereditary porencephaly. COL4A1 and COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities, indicated as “COL4A1 mutation–related disorders.” Genetic counseling is challenging because of broad phenotypic variation and reduced penetrance. At the Erasmus University Medical Center, diagnostic DNA analysis of both COL4A1 and COL4A2 in 183 index patients was performed between 2005 and 2013. In total, 21 COL4A1 and 3 COL4A2 mutations were identified, mostly in children with porencephaly or other patterns of parenchymal hemorrhage, with a high de novo mutation rate of 40% (10/24). The observations in 13 novel families harboring either COL4A1 or COL4A2 mutations prompted us to review the clinical spectrum. We observed recognizable phenotypic patterns and propose a screening protocol at diagnosis. Our data underscore the importance of COL4A1 and COL4A2 mutations in cerebrovascular disease, also in sporadic patients. Follow-up data on symptomatic and asymptomatic mutation carriers are needed for prognosis and appropriate surveillance.Genet Med 17 11, 843–853.
Molecular Biology of the Cell | 2013
Scot C. Leary; Paul A. Cobine; Tamiko Nishimura; Robert M. Verdijk; Ronald R. de Krijger; René de Coo; Mark A. Tarnopolsky; Dennis R. Winge; Eric A. Shoubridge
The study of patient tissues and cell lines shows that SCO1 and SCO2 function collaboratively to generate a redox-dependent signal that is transduced from mitochondria to the cytosol by COX19, where it is relayed to ATP7A to regulate the rate of copper efflux from the cell.
Journal of Inherited Metabolic Disease | 2016
Rosalba Carrozzo; Daniela Verrigni; Magnhild Rasmussen; René de Coo; Hernan Amartino; Marzia Bianchi; Daniela Buhas; Samir Mesli; Karin Naess; Alfred Peter Born; Berit Woldseth; Paolo Prontera; Mustafa Batbayli; Kirstine Ravn; Fróði Joensen; Duccio Maria Cordelli; Filippo M. Santorelli; Mar Tulinius; Niklas Darin; Morten Duno; Philippe Jouvencel; Alberto Burlina; Gabriela Stangoni; Enrico Bertini; Isabelle Redonnet-Vernhet; Carlo Dionisi-Vici; Johanna Uusimaa; Päivi Vieira; Andrés Nascimento Osorio; Robert McFarland
BackgroundThe encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings in these and 46 previously reported patients.Patients and resultsOf the 71 patients, 50 had SUCLA2 mutations and 21 had SUCLG1 mutations. In the newly-reported 20 SUCLA2 patients we found 16 different mutations, of which nine were novel: two large gene deletions, a 1xa0bp duplication, two 1xa0bp deletions, a 3xa0bp insertion, a nonsense mutation and two missense mutations. In the newly-reported SUCLG1 patients, five missense mutations were identified, of which two were novel. The median onset of symptoms was two months for patients with SUCLA2 mutations and at birth for SUCLG1 patients. Median survival was 20xa0years for SUCLA2 and 20xa0months for SUCLG1. Notable clinical differences between the two groups were hepatopathy, found in 38xa0% of SUCLG1 cases but not in SUCLA2 cases, and hypertrophic cardiomyopathy which was not reported in SUCLA2 patients, but documented in 14xa0% of cases with SUCLG1 mutations. Long survival, to age 20xa0years or older, was reported in 12xa0% of SUCLA2 and in 10xa0% of SUCLG1 patients. The most frequent abnormality on neuroimaging was basal ganglia involvement, found in 69xa0% of SUCLA2 and 80xa0% of SUCLG1 patients. Analysis of respiratory chain enzyme activities in muscle generally showed a combined deficiency of complexes I and IV, but normal histological and biochemical findings in muscle did not preclude a diagnosis of succinate-CoA ligase deficiency. In five patients, the urinary excretion of methylmalonic acid was only marginally elevated, whereas elevated plasma methylmalonic acid was consistently found.ConclusionsTo our knowledge, this is the largest study of patients with SUCLA2 and SUCLG1 deficiency. The most important findings were a significantly longer survival in patients with SUCLA2 mutations compared to SUCLG1 mutations and a trend towards longer survival in patients with missense mutations compared to loss-of-function mutations. Hypertrophic cardiomyopathy and liver involvement was exclusively found in patients with SUCLG1 mutations, whereas epilepsy was much more frequent in patients with SUCLA2 mutations compared to patients with SUCLG1 mutations. The mutation analysis revealed a number of novel mutations, including a homozygous deletion of the entire SUCLA2 gene, and we found evidence of two founder mutations in the Scandinavian population, in addition to the known SUCLA2 founder mutation in the Faroe Islands.
American Journal of Medical Genetics Part A | 2008
Rob M. Verdijk; Ronald R. de Krijger; Kees Schoonderwoerd; Valeria Tiranti; H.J.M. Smeets; Lutgarde C. P. Govaerts; René de Coo
SCO2 is a cytochrome c oxidase (COX) assembly gene. Mutations in the SCO2 gene have been associated with fatal infantile cardioencephalomyopathy. We report on the phenotype of a novel SCO2 mutation in two siblings with fatal infantile cardioencephalomyopathy. The index patient died of heart failure at 25 days of age. Muscle biopsy was performed for histology and biochemical study of the oxidative phosphorylation system complexes. The entire coding region of the SCO2 gene was sequenced. Autopsy was performed on the index patient and on a female sibling delivered at 23 weeks of gestation following termination of pregnancy during which amniocentesis and genetic testing had been performed. Muscle biopsy and biochemical analysis of heart and skeletal muscle detected a severe isolated COX‐IV deficiency. Pathologic findings in both patients confirmed hypertrophic cardiomyopathy. Sequencing of the SCO2 gene showed compound heterozygous mutation; the common E140K mutation and a novel W36X nonsense mutation. Newborns with a combination of hypotonia and cardiomyopathy should be evaluated for multiple congenital anomaly syndromes, inborn errors of metabolism and mitochondrial derangements, and may require extensive diagnostic testing. Mutations in the SCO2 gene are a cause of prenatal‐onset hypertrophic cardiomyopathy.