Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renee C. Gaspar is active.

Publication


Featured researches published by Renee C. Gaspar.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation

Lei Ma; Matthew A. Seager; Marion Wittmann; Marlene A. Jacobson; Denise Bickel; Maryann Burno; Keith Jones; Valerie Kuzmick Graufelds; Guangping Xu; Michelle Pearson; Alexander McCampbell; Renee C. Gaspar; Paul J. Shughrue; Andrew Danziger; Christopher P. Regan; Rose Flick; Danette Pascarella; Susan L. Garson; Scott M. Doran; Constantine Kreatsoulas; Lone Veng; Craig W. Lindsley; William D. Shipe; Scott D. Kuduk; Cyrille Sur; Gene G. Kinney; Guy R. Seabrook; William J. Ray

The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). During Alzheimers disease (AD), these cholinergic neurons degenerate, therefore selectively activating M1 receptors could improve cognitive function in these patients while avoiding unwanted peripheral responses associated with non-selective muscarinic agonists. We describe here benzyl quinolone carboxylic acid (BQCA), a highly selective allosteric potentiator of the M1 mAChR. BQCA reduces the concentration of ACh required to activate M1 up to 129-fold with an inflection point value of 845 nM. No potentiation, agonism, or antagonism activity on other mAChRs is observed up to 100 μM. Furthermore studies in M1−/− mice demonstrates that BQCA requires M1 to promote inositol phosphate turnover in primary neurons and to increase c-fos and arc RNA expression and ERK phosphorylation in the brain. Radioligand-binding assays, molecular modeling, and site-directed mutagenesis experiments indicate that BQCA acts at an allosteric site involving residues Y179 and W400. BQCA reverses scopolamine-induced memory deficits in contextual fear conditioning, increases blood flow to the cerebral cortex, and increases wakefulness while reducing delta sleep. In contrast to M1 allosteric agonists, which do not improve memory in scopolamine-challenged mice in contextual fear conditioning, BQCA induces β-arrestin recruitment to M1, suggesting a role for this signal transduction mechanism in the cholinergic modulation of memory. In summary, BQCA exploits an allosteric potentiation mechanism to provide selectivity for the M1 receptor and represents a promising therapeutic strategy for cognitive disorders.


Molecular Imaging and Biology | 2010

Dual In Vivo Quantification of Integrin-targeted and Protease-activated Agents in Cancer Using Fluorescence Molecular Tomography (FMT)

Sylvie Kossodo; Maureen Pickarski; Shu-An Lin; Alexa Gleason; Renee C. Gaspar; Chiara Buono; Guojie Ho; Agnieszka Blusztajn; Garry Cuneo; Jun Zhang; Jayme Jensen; Richard Hargreaves; Paul J. Coleman; George D. Hartman; Milind Rajopadhye; Le Thi Duong; Cyrille Sur; Wael Yared; Jeffrey D. Peterson; Bohumil Bednar

PurposeIntegrins, especially αvβ3 and αvβ5, are upregulated in tumor cells and activated endothelial cells and as such, serve as cancer biomarkers. We developed a novel near-infrared-labeled optical agent for the in vivo detection and quantification of αvβ3/αvβ5.ProceduresA small peptidomimetic αvβ3 antagonist was synthesized, coupled to a near-infrared fluorescent (NIRF) dye, and tested for binding specificity using integrin-overexpressing cells, inhibition of vitronectin-mediated cell attachment, binding to tumor and endothelial cells in vitro, and competition studies. Pharmacokinetics, biodistribution, specificity of tumor targeting, and the effect of an antiangiogenic treatment were assessed in vivo.ResultsThe integrin NIRF agent showed strong selectivity towards αvβ3/αvβ5in vitro and predominant tumor distribution in vivo, allowing noninvasive and real-time quantification of integrin signal in tumors. Antiangiogenic treatment significantly inhibited integrin signal in vivo but had no effect on a cathepsin-cleavable NIR agent. Simultaneous imaging revealed different patterns of distribution reflecting the underlying differences in integrin and cathepsin biology during tumor progression.ConclusionsNIRF-labeled integrin antagonists allow noninvasive molecular fluorescent imaging and quantification of tumors in vivo, improving and providing more refined approaches for cancer detection and treatment monitoring.


The Journal of Neuroscience | 2015

Internalized Tau Oligomers Cause Neurodegeneration by Inducing Accumulation of Pathogenic Tau in Human Neurons Derived from Induced Pluripotent Stem Cells.

Marija Usenovic; Shahriar Niroomand; Robert E. Drolet; Lihang Yao; Renee C. Gaspar; Nathan G. Hatcher; Joel B. Schachter; John J. Renger; Sophie Parmentier-Batteur

Neuronal inclusions of hyperphosphorylated and aggregated tau protein are a pathological hallmark of several neurodegenerative tauopathies, including Alzheimers disease (AD). The hypothesis of tau transmission in AD has emerged from histopathological studies of the spatial and temporal progression of tau pathology in postmortem patient brains. Increasing evidence in cellular and animal models supports the phenomenon of intercellular spreading of tau. However, the molecular and cellular mechanisms of pathogenic tau transmission remain unknown. The studies described herein investigate tau pathology propagation using human neurons derived from induced pluripotent stem cells. Neurons were seeded with full-length human tau monomers and oligomers and chronic effects on neuronal viability and function were examined over time. Tau oligomer-treated neurons exhibited an increase in aggregated and phosphorylated pathological tau. These effects were associated with neurite retraction, loss of synapses, aberrant calcium homeostasis, and imbalanced neurotransmitter release. In contrast, tau monomer treatment did not produce any measureable changes. This work supports the hypothesis that tau oligomers are toxic species that can drive the spread of tau pathology and neurodegeneration. SIGNIFICANCE STATEMENT Several independent studies have implicated tau protein as central to Alzheimers disease progression and cell-to-cell pathology propagation. In this study, we investigated the ability of different tau species to propagate pathology in human neurons derived from induced pluripotent stem cells, which to date has not been shown. We demonstrated that tau oligomers, but not monomers, induce accumulation of pathological, hyperphosphorylated tau. This effect was accompanied with neurite degeneration, loss of synapses, aberrant calcium homeostasis, imbalanced neurotransmitter release, and ultimately with neuronal death. This study bridges various tau pathological phenotypes into a single and relevant induced pluripotent stem cell neuronal model of human disease that can be applied to the discovery of the mechanisms of tau-induced neurodegeneration.


The Journal of Comparative Neurology | 2016

Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography

Sajedeh Eftekhari; Renee C. Gaspar; Rhonda Roberts; Tsing-Bau Chen; Zhizhen Zeng; Stephanie Villarreal; Lars Edvinsson; Christopher A. Salvatore

Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene–related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor–like receptor (CLR) and receptor activity–modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [3H]MK‐3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [3H]MK‐3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood–brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions. J. Comp. Neurol. 524:90–118, 2016.


Experimental Neurology | 2010

Oligomers of β-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model

Renee C. Gaspar; Stephanie Villarreal; Nicole Bowles; Robert W. Hepler; Joseph G. Joyce; Paul J. Shughrue

Amyloid plaque deposition in the brain is a hallmark of Alzheimers disease, but recent evidence indicates that the disease may be primarily caused by soluble amyloid-beta (1-42) (Abeta) oligomers or Abeta-derived diffusible ligands (ADDLs). ADDLs induce cognitive deficits in animal models and are thought to assemble in vitro by a mechanism apart from plaque formation. To investigate the in vivo relationship of ADDLs and plaques, biotin-labeled ADDLs (bADDLs) or amylin oligomers (bAMs) were injected into the hippocampus of hAPP overexpressing mice. The brains were collected 1 or 5 weeks after the last treatment and were processed for immunohistochemistry. Staining of tissue 1 week post-treatment showed bADDLs had diffused throughout the tissue and incorporated into plaques. Additionally, small deposits of thioflavin S-negative bADDLs were observed. At 5 weeks post-treatment, thioflavin S-positive material continued to accumulate around plaques containing bADDLs. Thioflavin S-positive material also accrued around bADDL deposits, implying that bADDLs were capable of seeding new plaques. In contrast, bAMs cleared from the brain and did not accumulate in plaques. Together, these data indicate that ADDLs are able to contribute to in vivo plaque formation in a peptide-specific manner.


The Cerebellum | 2013

Localization of CGRP Receptor Components, CGRP, and Receptor Binding Sites in Human and Rhesus Cerebellar Cortex.

Sajedeh Eftekhari; Christopher A. Salvatore; Renee C. Gaspar; Rhonda Roberts; Stacey O'Malley; Zhizhen Zeng; Lars Edvinsson

The cerebellum is classically considered to be mainly involved in motor processing, but studies have suggested several other functions, including pain processing. Calcitonin-gene-related peptide (CGRP) is a neuropeptide involved in migraine pathology, where there is elevated release of CGRP during migraine attacks and CGRP receptor antagonists have antimigraine efficacy. In the present study, we examined CGRP and CGRP receptor binding sites and protein expression in primate cerebellar cortex. Additionally, mRNA expression of the CGRP receptor components, calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1), was examined. In addition, expression of procalcitonin was studied. We observed high [3H]MK-3207 (CGRP receptor antagonist) binding densities in the molecular layer of rhesus cerebellar cortex; however, due to the limit of resolution of the autoradiographic image the exact cellular localization could not be determined. Similarly, [125I]CGRP binding was observed in the molecular layer and Purkinje cell layer of human cerebellum. CLR and RAMP1 mRNA was expressed within the Purkinje cell layer and some expression was found in the molecular layer. Immunofluorescence revealed expression of CGRP, CLR, and RAMP1 in the Purkinje cells and in cells in the molecular layer. Procalcitonin was found in the same localization. Recent research in the biology of cerebellum indicates that it may have a role in nociception. For the first time we have identified CGRP and CGRP receptor binding sites together with CGRP receptor expression through protein and mRNA localization in primate cerebellar cortex. These results point toward a functional role of CGRP in cerebellum. Further efforts are needed to evaluate this.


Archive | 2012

Antibodies, kit and method for detecting amyloid beta oligomers

William F. Goure; Renee C. Gaspar; Alexander McCampbell; Mary J. Savage; Paul J. Shughrue; Fubao Wang; Weirong Wang; Abigail Wolfe; Ningyan Zhang; Wei-Qin Zhao


Archive | 2013

Method for treating a disease associated with soluble, oligomeric species of amyloid beta 1-42

William F. Goure; Franz Hefti; Renee C. Gaspar; Paul J. Shughrue; Fubao Wang; Weirong Wang; Ningyan Zhang; Wei-Qin Zhao; Alexander McCampbell; Min Xu


Archive | 2013

Procédé de traitement d'une maladie associée à une espèce oligomère soluble d'amyloïde bêta 1-42

William F. Goure; Franz Hefti; Renee C. Gaspar; Paul J. Shughrue; Fubao Wang; Weirong Wang; Ningyan Zhang; Wei-Qin Zhao


Archive | 2013

Verfahren zur behandlung einer erkrankung im zusammenhang mit löslichen oligomeren arten von amyloid-beta 1-42

William F. Goure; Franz Hefti; Renee C. Gaspar; Paul J. Shughrue; Fubao Wang; Weirong Wang; Ningyan Zhang; Wei-Qin Zhao

Collaboration


Dive into the Renee C. Gaspar's collaboration.

Top Co-Authors

Avatar

Paul J. Shughrue

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Wei-Qin Zhao

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Alexander Mccampbell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge