Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renee C. Ryals is active.

Publication


Featured researches published by Renee C. Ryals.


PLOS ONE | 2013

Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors

Christine N. Kay; Renee C. Ryals; George Aslanidi; Seok Hong Min; Qing Ruan; Jingfen Sun; Frank M. Dyka; Daniel Kasuga; Andrea E. Ayala; Kim Van Vliet; Mavis Agbandje-McKenna; William W. Hauswirth; Sanford L. Boye; Shannon E. Boye

Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y) and threonine (T) residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F) and valine (V), respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice). Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS) by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary) AAV vectors containing the human rhodopsin kinase promoter (hGRK1) were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY−F+T−V) transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY−F+T−V) −hGRK1−GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus we have identified a novel AAV vector capable of transducing photoreceptors following intravitreal delivery to mouse. Furthermore, we describe a robust methodology for quantifying photoreceptor transduction from intravitreally delivered AAV vectors.


Blood | 2011

The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver.

Ashley T. Martino; Masataka Suzuki; David M. Markusic; Irene Zolotukhin; Renee C. Ryals; Babak Moghimi; Hildegund C.J. Ertl; Daniel A. Muruve; Brendan Lee; Roland W. Herzog

Although adeno-associated viral (AAV) vectors have been successfully used in hepatic gene transfer for treatment of hemophilia and other diseases in animals, adaptive immune responses blocked long-term transgene expression in patients on administration of single-stranded AAV serotype-2 vector. More efficient vectors have been developed using alternate capsids and self-complimentary (sc) genomes. This study investigated their effects on the innate immune profile on hepatic gene transfer to mice. A mild and transient up-regulation of myeloid differentiation primary response gene (88), TLR9, TNF-α, monocyte chemotactic protein-1, IFN-γ inducible protein-10, and IFN-α/β expression in the liver was found after single-stranded AAV vector administration, regardless of the capsid sequence. In contrast, scAAV vectors induced higher increases of these transcripts, upregulated additional proinflammatory genes, and increased circulating IL-6. Neutrophil, macrophage, and natural killer cell liver infiltrates were substantially higher on injection of scAAV. Some but not all of these responses were Kupffer cell dependent. Independent of the capsid or expression cassette, scAAV vectors induced dose-dependent innate responses by signaling through TLR9. Increased innate responses to scAAV correlated with stronger adaptive immune responses against capsid (but not against the transgene product). However, these could be blunted by transient inhibition of TLR9.


PLOS ONE | 2010

Functional and Behavioral Restoration of Vision by Gene Therapy in the Guanylate Cyclase-1 (GC1) Knockout Mouse

Shannon E. Boye; Sanford L. Boye; Ji-jing Pang; Renee C. Ryals; Drew Everhart; Yumiko Umino; Andy W. Neeley; Joseph C. Besharse; Robert B. Barlow; William W. Hauswirth

Background Recessive mutations in guanylate cyclase-1 (Gucy2d) are associated with severe, early onset Leber congenital amaurosis-1(LCA1). Gucy2d encodes guanylate cyclase (GC1) is expressed in photoreceptor outer segment membranes and produces cGMP in these cells. LCA1 patients present in infancy with severely impaired vision and extinguished electroretinogram (ERG) but retain some photoreceptors in both their macular and peripheral retina for years. Like LCA1 patients, loss of cone function in the GC1 knockout (GC1KO) mouse precedes cone degeneration. The purpose of this study was to test whether delivery of functional GC1 to cone cells of the postnatal GC1KO mouse could restore function to these cells. Methodology/Principal Findings Serotype 5 AAV vectors containing either a photoreceptor-specific, rhodopsin kinase (hGRK1) or ubiquitous (smCBA) promoter driving expression of wild type murine GC1 were subretinally delivered to one eye of P14 GC1KO mice. Visual function (ERG) was analyzed in treated and untreated eyes until 3 months post injection. AAV-treated, isogenic wild type and uninjected control mice were evaluated for restoration of visual behavior using optomotor testing. At 3 months post injection, all animals were sacrificed, and their treated and untreated retinas assayed for expression of GC1 and localization of cone arrestin. Cone-mediated function was restored to treated eyes of GC1KO mice (ERG amplitudes were ∼45% of normal). Treatment effect was stable for at least 3 months. Robust improvements in cone-mediated visual behavior were also observed, with responses of treated mice being similar or identical to that of wild type mice. AAV-vectored GC1 expression was found in photoreceptors and cone cells were preserved in treated retinas. Conclusions/Significance This is the first demonstration of gene-based restoration of both visual function/vision-elicited behavior and cone preservation in a mammalian model of GC1 deficiency. Importantly, results were obtained using a well characterized, clinically relevant AAV vector. These results lay the ground work for the development of an AAV-based gene therapy vector for the treatment of LCA1.


Gene Therapy | 2010

Self-complementary AAV-mediated gene therapy restores cone function and prevents cone degeneration in two models of Rpe65 deficiency

Ji-jing Pang; Shannon E. Boye; Bo Lei; Sanford L. Boye; Drew Everhart; Renee C. Ryals; Yumiko Umino; Bärbel Rohrer; John J. Alexander; Jie Li; Xufeng Dai; Qiuhong Li; Bo Chang; Robert B. Barlow; William W. Hauswirth

To test whether fast-acting, self-complimentary (sc), adeno-associated virus-mediated RPE65 expression prevents cone degeneration and/or restores cone function, we studied two mouse lines: the Rpe65-deficient rd12 mouse and the Rpe65-deficient, rhodopsin null (‘that is, cone function-only’) Rpe65−/−::Rho−/− mouse. scAAV5 expressing RPE65 was injected subretinally into one eye of rd12 and Rpe65−/−::Rho−/− mice at postnatal day 14 (P14). Contralateral rd12 eyes were injected later, at P35. Rd12 behavioral testing revealed that rod vision loss was prevented with either P14 or P35 treatment, whereas cone vision was only detected after P14 treatment. Consistent with this observation, P35 treatment only restored rod electroretinogram (ERG) signals, a result likely due to reduced cone densities at this time point. For Rpe65−/−::Rho−/− mice in which there is no confounding rod contribution to the ERG signal, cone cells and cone-mediated ERGs were also maintained with treatment at P14. This work establishes that a self-complimentary AAV5 vector can restore substantial visual function in two genetically distinct models of Rpe65 deficiency within 4 days of treatment. In addition, this therapy prevents cone degeneration but only if administered before extensive cone degeneration, thus supporting continuation of current Lebers congenital amaurosis-2 clinical trials with an added emphasis on cone subtype analysis and early intervention.


Human gene therapy. Clinical development | 2013

Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa.

Thomas J. Conlon; Wen-Tao Deng; Kirsten E. Erger; Travis Cossette; Ji-jing Pang; Renee C. Ryals; Nathalie Clément; Brian D. Cleaver; Issam McDoom; Shannon E. Boye; Marc C. Peden; Mark B. Sherwood; Corinne R. Abernathy; Fowzan S. Alkuraya; Sanford L. Boye; William W. Hauswirth

Abstract Proof of concept for MERTK gene replacement therapy has been demonstrated using different viral vectors in the Royal College of Surgeon (RCS) rat, a well characterized model of recessive retinitis pigmentosa that contains a mutation in the Mertk gene. MERTK plays a key role in renewal of photoreceptor outer segments (OS) by phagocytosis of shed OS tips. Mutations in MERTK cause impaired phagocytic activity and accumulation of OS debris in the interphotoreceptor space that ultimately leads to photoreceptor cell death. In the present study, we conducted a series of preclinical potency and GLP-compliant safety evaluations of an adeno-associated virus type 2 (AAV2) vector expressing human MERTK cDNA driven by the retinal pigment epithelium-specific, VMD2 promoter. We demonstrate the potency of the vector in RCS rats by improved electroretinogram (ERG) responses in treated eyes compared with contralateral untreated controls. Toxicology and biodistribution studies were performed in Sprague-Dawley (SD) rats injected with two different doses of AAV vectors and buffer control. Delivery of vector in SD rats did not result in a change in ERG amplitudes of rod and cone responses relative to balanced salt solution control-injected eyes, indicating that administration of AAV vector did not adversely affect normal retinal function. In vivo fundoscopic analysis and postmortem retinal morphology of the vector-injected eyes were normal compared with controls. Evaluation of blood smears showed the lack of transformed cells in the treated eyes. All injected eyes and day 1 blood samples were positive for vector genomes, and all peripheral tissues were negative. Our results demonstrate the potency and safety of the AAV2-VMD2-hMERTK vector in animal models tested. A GMP vector has been manufactured and is presently in clinical trial.


Human Gene Therapy | 2012

The Human Rhodopsin Kinase Promoter in an AAV5 Vector Confers Rod- and Cone-Specific Expression in the Primate Retina

Shannon E. Boye; John J. Alexander; Sanford L. Boye; Clark D. Witherspoon; Kristen J. Sandefer; Thomas J. Conlon; Kirsten E. Erger; Jingfen Sun; Renee C. Ryals; Vince A. Chiodo; Mark E. Clark; Christopher A. Girkin; William W. Hauswirth; Paul D. Gamlin

Adeno-associated virus (AAV) has proven an effective gene delivery vehicle for the treatment of retinal disease. Ongoing clinical trials using a serotype 2 AAV vector to express RPE65 in the retinal pigment epithelium have proven safe and effective. While many proof-of-concept studies in animal models of retinal disease have suggested that gene transfer to the neural retina will also be effective, a photoreceptor-targeting AAV vector has yet to be used in the clinic, principally because a vector that efficiently but exclusively targets all primate photoreceptors has yet to be demonstrated. Here, we evaluate a serotype 5 AAV vector containing the human rhodopsin kinase (hGRK1) promoter for its ability to target transgene expression to rod and cone photoreceptors when delivered subretinally in a nonhuman primate (NHP). In vivo fluorescent fundus imaging confirmed that AAV5-hGRK1-mediated green fluorescent protein (GFP) expression was restricted to the injection blebs of treated eyes. Optical coherence tomography (OCT) revealed a lack of gross pathology after injection. Neutralizing antibodies against AAV5 were undetectable in post-injection serum samples from subjects receiving uncomplicated subretinal injections (i.e., no hemorrhage). Immunohistochemistry of retinal sections confirmed hGRK1 was active in, and specific for, both rods and cones of NHP retina. Biodistribution studies revealed minimal spread of vector genomes to peripheral tissues. These results suggest that AAV5-hGRK1 is a safe and effective AAV serotype/promoter combination for targeting therapeutic transgene expression protein to rods and cones in a clinical setting.


Investigative Ophthalmology & Visual Science | 2011

Long-term Preservation of Cone Photoreceptors and Restoration of Cone Function by Gene Therapy in the Guanylate Cyclase-1 Knockout (GC1KO) Mouse

Sanford L. Boye; Thomas J. Conlon; Kirsten E. Erger; Renee C. Ryals; Andy W. Neeley; Travis Cossette; Ji-jing Pang; Frank M. Dyka; William W. Hauswirth; Shannon E. Boye

PURPOSE The authors previously showed that subretinal delivery of AAV5 vectors containing murine guanylate cyclase-1 (GC1) cDNA driven by either photoreceptor-specific (hGRK1) or ubiquitous (smCBA) promoters was capable of restoring cone-mediated function and visual behavior and preserving cone photoreceptors in the GC1 knockout (GC1KO) mouse for 3 months. Here, the authors compared therapy conferred by the aforementioned vectors to that achieved with the highly efficient capsid tyrosine mutant AAV8(Y733F) and asked whether long-term therapy is achievable in this model. METHODS AAV5-hGRK1-mGC1, AAV5-smCBA-mGC1, or AAV8(Y733F)-hGRK1-mGC1 was delivered subretinally to GC1KO mice between postnatal day (P)14 and P25. Retinal function was assayed by electroretinography. Localization of AAV-mediated GC1 expression and cone survival were assayed with immunohistochemistry, and the spread of vector genomes beyond the retina was quantified by PCR of optic nerve and brain tissue. RESULTS Cone function was restored with all vectors tested, with AAV8(Y733F) being the most efficient. Electroretinographic responses were clearly measurable out to 1 year after treatment. AAV-mediated expression of GC1 was found exclusively in photoreceptors out to 15 months after injection. Cones were preserved for at least 11 months after treatment. AAV5- and AAV8(733)-delivered vector genomes were recovered primarily from optic nerve of the treated eye and, in only instance, from brain (1 of 20 samples). CONCLUSIONS The authors demonstrate for the first time that long-term therapy (∼1 year) is achievable in a mammalian model of GC1 deficiency. These data provide additional justification for the development of an AAV-based gene therapy vector for the clinical treatment of Leber congenital amaurosis-1.


Investigative Ophthalmology & Visual Science | 2012

γ-Secretase Inhibition of Murine Choroidal Neovascularization Is Associated with Reduction of Superoxide and Proinflammatory Cytokines

Xiaoping Qi; Jun Cai; Qing Ruan; Li Liu; Sanford L. Boye; Zhijuan Chen; William W. Hauswirth; Renee C. Ryals; Lynn C. Shaw; Sergio Caballero; Maria B. Grant; Michael E. Boulton

PURPOSE This study aimed to determine whether upregulation of γ-secretase could inhibit laser-induced choroidal neovascularization (CNV) and if this was associated with a reduction in both oxidative stress and proinflammatory cytokines. METHODS γ-Secretase, or its catalytic subunit presenilin 1 (PS1), were upregulated by exposure to either pigment epithelial derived factor (PEDF) or an AAV2 vector containing a PS1 gene driven by a vascular endothelial-cadherin promoter. Retinal endothelial cells were infected with AAV2 or exposed to PEDF in the presence or absence of VEGF and in vitro angiogenesis determined. Mouse eyes either received intravitreal injection of PEDF, DAPT (a γ-secretase inhibitor) or PEDF + DAPT at the time of laser injury, or AAV2 infection 3 weeks before receiving laser burns. Lesion volume was determined 14 days post laser injury. Superoxide generation, antioxidant activity and the production of proinflammatory mediators were assessed. Knockdown of γ-secretase was achieved using siRNA. RESULTS γ-Secretase upregulation and PS1 overexpression suppressed VEGF-induced in vitro angiogenesis and in vivo laser-induced CNV. This was associated with a reduction in the expression of VEGF and angiogenin 1 together with reduced superoxide anion generation and an increase in MnSOD compared with untreated CNV eyes. PS1 overexpression reduced proinflammatory factors and microglial activation in eyes with CNV compared with control. siRNA inhibition of γ-secretase resulted in increased angiogenesis. CONCLUSIONS γ-Secretase, and in particular PS1 alone, are potent regulators of angiogenesis and this is due in part to stabilizing endogenous superoxide generation and reducing proinflammatory cytokine expression during CNV.


PLOS ONE | 2014

Natural history of cone disease in the murine model of Leber congenital amaurosis due to CEP290 mutation: determining the timing and expectation of therapy.

Shannon E. Boye; Wei-Chieh Huang; Alejandro J. Roman; Alexander Sumaroka; Sanford L. Boye; Renee C. Ryals; Melani B. Olivares; Qing Ruan; Budd A. Tucker; Edwin M. Stone; Anand Swaroop; Artur V. Cideciyan; William W. Hauswirth; Samuel G. Jacobson

Background Mutations in the CEP290 (cilia-centrosomal protein 290 kDa) gene in Leber congenital amaurosis (LCA) cause early onset visual loss but retained cone photoreceptors in the fovea, which is the potential therapeutic target. A cone-only mouse model carrying a Cep290 gene mutation, rd16;Nrl−/−, was engineered to mimic the human disease. In the current study, we determined the natural history of retinal structure and function in this murine model to permit design of pre-clinical proof-of-concept studies and allow progress to be made toward human therapy. Analyses of retinal structure and visual function in CEP290-LCA patients were also performed for comparison with the results in the model. Methods Rd16;Nrl−/− mice were studied in the first 90 days of life with optical coherence tomography (OCT), electroretinography (ERG), retinal histopathology and immunocytochemistry. Structure and function data from a cohort of patients with CEP290-LCA (n = 15; ages 7–48) were compared with those of the model. Results CEP290-LCA patients retain a central island of photoreceptors with normal thickness at the fovea (despite severe visual loss); the extent of this island declined slowly with age. The rd16;Nrl−/− model also showed a relatively slow photoreceptor layer decline in thickness with ∼80% remaining at 3 months. The number of pseudorosettes also became reduced. By comparison to single mutant Nrl−/− mice, UV- and M-cone ERGs of rd16;Nrl−/− were at least 1 log unit reduced at 1 month of age and declined further over the 3 months of monitoring. Expression of GNAT2 and S-opsin also decreased with age. Conclusions The natural history of early loss of photoreceptor function with retained cone cell nuclei is common to both CEP290-LCA patients and the rd16;Nrl−/− murine model. Pre-clinical proof-of-concept studies for uniocular therapies would seem most appropriate to begin with intervention at P35–40 and re-study after one month by assaying interocular difference in the UV-cone ERG.


Advances in Experimental Medicine and Biology | 2014

Cone specific promoter for use in gene therapy of retinal degenerative diseases.

Frank M. Dyka; Sanford L. Boye; Renee C. Ryals; Vince A. Chiodo; Shannon E. Boye; William W. Hauswirth

Achromatopsia (ACHM) is caused by a progressive loss of cone photoreceptors leading to color blindness and poor visual acuity. Animal studies and human clinical trials have shown that gene replacement therapy with adeno-associate virus (AAV) is a viable treatment option for this disease. Although there have been successful attempts to optimize capsid proteins for increased specificity, it is simpler to restrict expression via the use of cell type-specific promoters. To target cone photoreceptors, a chimeric promoter consisting of an enhancer element of interphotoreceptor retinoid-binding protein promoter and a minimal sequence of the human transducin alpha-subunit promoter (IRBPe/GNAT2) was created. Additionally, a synthetic transducin alpha-subunit promoter (synGNAT2/GNAT2) containing conserved sequence blocks located downstream of the transcriptional start was created. The strength and specificity of these promoters were evaluated in murine retina by immunohistochemistry. The results showed that the chimeric, (IRBPe/GNAT2) promoter is more efficient and specific than the synthetic, synGNAT2/GNAT2 promoter. Additionally, IRBPe/GNAT2-mediated expression was found in all cone subtypes and it was improved over existing promoters currently used for gene therapy of achromatopsia.

Collaboration


Dive into the Renee C. Ryals's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Ruan

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge