Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renee Whan is active.

Publication


Featured researches published by Renee Whan.


ACS Nano | 2013

Using Fluorescence Lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release

Johan Sebastian Basuki; Hien Tt Duong; Alexander Macmillan; Rafael B. Erlich; Lars Esser; Mia C. Akerfeldt; Renee Whan; Maria Kavallaris; Cyrille Boyer; Thomas P. Davis

We describe the synthesis of iron oxide nanoparticles (IONPs) with excellent colloidal stability in both water and serum, imparted by carefully designed grafted polymer shells. The polymer shells were built with attached aldehyde functionality to enable the reversible attachment of doxorubicin (DOX) via imine bonds, providing a controlled release mechanism for DOX in acidic environments. The IONPs were shown to be readily taken up by cell lines (MCF-7 breast cancer cells and H1299 lung cancer cells), and intracellular release of DOX was proven using in vitro fluorescence lifetime imaging microscopy (FLIM) measurements. Using the fluorescence lifetime difference exhibited by native DOX (~1 ns) compared to conjugated DOX (~4.6 ns), the intracellular release of conjugated DOX was in situ monitored in H1299 and was estimated using phasor plot representation, showing a clear increase of native DOX with time. The results obtained from FLIM were corroborated using confocal microscopy, clearly showing DOX accumulation in the nuclei. The IONPs were also assessed as MRI negative contrast agents. We observed a significant change in the transverse relaxivity properties of the IONPs, going from 220 to 390 mM(-1) s(-1), in the presence or absence of conjugated DOX. This dependence of MRI signal on IONP-DOX/water interactions may be exploited in future theranostic applications. The in vitro studies were then extended to monitor cell uptake of the DOX loaded IONPs (IONP@P(HBA)-b-P(OEGA) + DOX) into two 3D multicellular tumor spheroids (MCS) grown from two independent cell lines (MCF-7 and H1299) using multiphoton excitation microscopy.


Biomacromolecules | 2014

Dextran-Based Doxorubicin Nanocarriers with Improved Tumor Penetration

Sharon M. Sagnella; Hien T. T. Duong; Alex Macmillan; Cyrille Boyer; Renee Whan; Joshua A. McCarroll; Thomas P. Davis; Maria Kavallaris

Drug delivery systems with improved tumor penetration are valuable assets as anticancer agents. A dextran-based nanocarrier system with aldehyde functionalities capable of forming an acid labile linkage with the chemotherapy drug doxorubicin was developed. Aldehyde dextran nanocarriers (ald-dex-dox) demonstrated efficacy as delivery vehicles with an IC50 of ∼300 nM against two-dimensional (2D) SK-N-BE(2) monolayers. Confocal imaging showed that the ald-dex-dox nanocarriers were rapidly internalized by SK-N-BE(2) cells. Fluorescence lifetime imaging microscopy (FLIM) analysis indicated that ald-dex-dox particles were internalized as intact complexes with the majority of the doxorubicin released from the particle four hours post uptake. Accumulation of the ald-dex-dox particles was significantly enhanced by ∼30% in the absence of glucose indicating a role for glucose and its receptors in their endocytosis. However, inhibition of clathrin dependent and independent endocytosis and macropinocytosis as well as membrane cholesterol depletion had no effect on ald-dex-dox particle accumulation. In three-dimensional (3D) SK-N-BE(2) tumor spheroids, which more closely resemble a solid tumor, the ald-dex-dox nanoparticles showed a significant improvement in efficacy over free doxorubicin, as evidenced by decreased spheroid outgrowth. Drug penetration studies in 3D demonstrated the ability of the ald-dex-dox nanocarriers to fully penetrate into a SK-N-BE(2) tumor spheroids, while doxorubicin only penetrates to a maximum distance of 50 μM. The ald-dex-dox nanocarriers represent a promising therapeutic delivery system for the treatment of solid tumors due to their unique enhanced penetration ability combined with their improved efficacy over the parent drug in 3D.


Stem Cells | 2015

Tracing the Fate of Limbal Epithelial Progenitor Cells in the Murine Cornea

N. Di Girolamo; Samantha Bobba; Vanisri Raviraj; Naomi C. Delic; Iveta Slapetova; Philip R. Nicovich; Gary M. Halliday; Denis Wakefield; Renee Whan; James Guy Lyons

Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreERT2‐Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K‐14+ progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound‐healing, disease, and following transplantation. Stem Cells 2015;33:157–169


Molecular Pharmaceutics | 2012

Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules

Hien T. T. Duong; Felicity Hughes; Sharon M. Sagnella; Maria Kavallaris; Alexander Macmillan; Renee Whan; James M. Hook; Thomas P. Davis; Cyrille Boyer

Conferring biodegradability to nanoparticles is vitally important when nanomedicine applications are being targeted, as this prevents potential problems with bioaccumulation of byproducts after delivery. In this work, dextran has been modified (and rendered hydrophobic) by partial acetalation. A solid state NMR method was first developed to fully characterize the acetalated polymers. In a subsequent synthetic step, RAFT functionality was attached via residual unmodified hydroxyl groups. The RAFT groups were then used in a living free radical polymerization reaction to control the growth of hydrophilic PEG-methacrylate chains, thereby generating amphiphilic comblike polymers. The amphiphilic polymers were then self-assembled in water to form various morphologies, including small vesicles, wormlike rods, and micellar structures, with PEG at the periphery acting as a nonfouling biocompatible polymer layer. The acetalated dextran nanoparticles were designed for potential doxorubicin (DOX) delivery application based on the premise that in the cell compartments (endosome, lysozome) the acetalated dextran would hydrolyze, destroying the nanoparticle structure, releasing the encapsulated DOX. In-vitro studies confirmed minimal cytotoxicity of the (unloaded) nanoparticles, even after 3 days, proving that the hydrolysis products from the acetal groups (methanol and acetone) had no observable cytotoxic effect. An intriguing initial result is reported that in vitro studies of DOX-loaded dextran-nanoparticles (compared to free DOX) revealed an increased differential toxicity toward a cancer cell line when compared to a normal cell line. Efficient accumulation of DOX in a human neuroblastoma cell line (SY-5Y) was confirmed by both confocal microscopy and flow cytometry measurements. Furthermore, the time dependent release of DOX was monitored using fluorescence lifetime imaging microscopy (FLIM) in SY-5Y live cells. FLIM revealed bimodal lifetime distributions, showing the accumulation of both DOX-loaded dextran-nanoparticles and subsequent release of DOX in the living cells. From FLIM data analysis, the amount of DOX released in SY-5Y cells was found to increase from 35% to 55% when the incubation time increased from 3 h to 24 h.


Science Translational Medicine | 2017

Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

Claire Vennin; Venessa T. Chin; Sean C. Warren; Morghan C. Lucas; David Herrmann; Astrid Magenau; Pauline Mélénec; Stacey N. Walters; Gonzalo del Monte-Nieto; James R.W. Conway; Max Nobis; Amr H. Allam; Rachael A. McCloy; Nicola Currey; Mark Pinese; Alice Boulghourjian; Anaiis Zaratzian; Arne A. S. Adam; Celine Heu; Adnan Nagrial; Angela Chou; Angela Steinmann; Alison Drury; Danielle Froio; Marc Giry-Laterriere; Nathanial L. E. Harris; Tri Giang Phan; Rohit Jain; Wolfgang Weninger; Ewan J. McGhee

Fine-tuned manipulation of tumor tension and vasculature enhances response to chemotherapy and impairs metastatic spread in pancreatic cancer. ROCK-ing pancreatic cancer to the core Pancreatic cancer, one of the most deadly and difficult-to-treat tumor types in patients, usually has a dense stroma that can be difficult for drugs to penetrate. Stromal characteristics can also affect multiple other aspects of tumor biology, including metastatic spread, vascular supply, and immune response. Vennin et al. used Fasudil, a drug that inhibits a protein called ROCK and is already used for some conditions in people, to demonstrate the feasibility including short-term tumor stroma remodeling as part of cancer treatment. In genetically engineered and patient-derived mouse models of pancreatic cancer, priming with Fasudil disrupted the tumors’ extracellular matrix and improved the effectiveness of subsequent treatment with standard-of-care chemotherapy for this disease. The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.


Advanced Healthcare Materials | 2015

Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity

Yang Li; Hien T. T. Duong; Sophie Laurent; Alexandre MacMillan; Renee Whan; Luce Vander Elst; Robert N. Muller; Jinming Hu; Andrew B. Lowe; Cyrille Boyer; Thomas P. Davis

Dual-functional star polymers (diameters 15 nm) are synthesized producing nanoparticles with excellent colloidal stability in both water and serum. The nanoparticles are built with aldehyde groups in the core and activated esters in the arms. The different reactivity of the two functional groups to sequentially react with different amino compounds is exploited; doxorubicin (DOX) and 1-(5-amino-3-aza-2-oxypentyl)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO3A-tBu-NH2 )-a chelating agent effective for the complexation of Gadolinium ions (Gd). The activated ester group is employed to attach the DO3A chelating agent, while the aldehyde groups are exploited for DOX conjugation, providing a controlled release mechanism for DOX in acidic environments. DOX/Gd-loaded nanoparticles are rapidly taken up by MCF-7 breast cancer cells, subsequently releasing DOX as demonstrated using in vitro fluorescence lifetime imaging microscopy (FLIM). Endosomal, DOX release is observed, using a phasor plot representation of the fluorescence lifetime data, showing an increase of native DOX with time. The MRI properties of the stars are assessed and the relaxivity of Gd loaded in stars is three times higher than conventional organic Gd/DO3A complexes. The DOX/Gd-conjugated nanoparticles yield a similar IC50 to native DOX for breast cancer cell lines, confirming that DOX integrity is conserved during nanoparticle attachment and release.


PLOS ONE | 2015

Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

Iman Jalilian; Celine Heu; Hong Cheng; Hannah Freittag; Melissa Desouza; Justine R. Stehn; Nicole S. Bryce; Renee Whan; Edna C. Hardeman; Thomas Fath; Galina Schevzov; Peter Gunning

The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.


Polymer Chemistry | 2014

Spatial and temporal control of drug release through pH and alternating magnetic field induced breakage of Schiff base bonds

Alexander E. Dunn; Douglas J. Dunn; Alexander Macmillan; Renee Whan; Tim Stait-Gardner; William S. Price; May Lim; Cyrille Boyer

P(DEGMA-co-OEGMA-b-[TMSPMA-co-VBA])@silica@magnetite polymer–nanoparticle composites have been developed as a platform for controllable drug release. The nanocomposite facilitates controllable release of therapeutic molecules through breakage of pH and heat labile Schiff base bonds that bind the molecules to the polymer. This enables dual-stimuli responsive drug release in response to the acidic microenvironment of cancerous cells and heat generated by the magnetite nanoparticles when subjected to an alternating magnetic field, thereby permitting spatial and temporal control over ‘burst’ release of the drugs. The nanocomposite has also been shown to be effective at improving magnetic resonance imaging contrast through enhancement of spin–spin relaxivity.


Proceedings of the National Academy of Sciences of the United States of America | 2016

PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

Vashe Chandrakanthan; Avani Yeola; Jair C. Kwan; Rema Oliver; Qiao Qiao; Young Chan Kang; Peter Zarzour; Dominik Beck; Lies Boelen; Ashwin Unnikrishnan; Jeanette E. Villanueva; Andrea C. Nunez; Kathy Knezevic; Cintia Palu; Rabab Nasrallah; Michael Carnell; Alex Macmillan; Renee Whan; Yan Yu; Philip Hardy; Shane T. Grey; Amadeus Gladbach; Fabien Delerue; Lars M. Ittner; Ralph J. Mobbs; Carl R. Walkley; Louise E. Purton; Robyn L. Ward; Jason Wong; Luke B. Hesson

Significance In this report we describe the generation of tissue-regenerative multipotent stem cells (iMS cells) by treating mature bone and fat cells transiently with a growth factor [platelet-derived growth factor–AB (PDGF-AB)] and 5-Azacytidine, a demethylating compound that is widely used in clinical practice. Unlike primary mesenchymal stem cells, which are used with little objective evidence in clinical practice to promote tissue repair, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner without forming tumors. This method can be applied to both mouse and human somatic cells to generate multipotent stem cells and has the potential to transform current approaches in regenerative medicine. Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


Biophysical Reviews | 2010

Multi-dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy

Yingying Su; Marko Nykanen; Kristina A. Jahn; Renee Whan; Laurence C. Cantrill; Lilian L. Soon; Kyle R. Ratinac; Filip Braet

To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as ‘correlative microscopy’. Correlative imaging allows researchers to gain additional novel structure–function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or ‘combined’) microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.

Collaboration


Dive into the Renee Whan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Macmillan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Cyrille Boyer

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Maria Kavallaris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alexander Macmillan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hien T. T. Duong

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon M. Sagnella

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge