Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole S. Bryce is active.

Publication


Featured researches published by Nicole S. Bryce.


Current Biology | 2005

Cortactin Promotes Cell Motility by Enhancing Lamellipodial Persistence

Nicole S. Bryce; Emily S. Clark; Ja’Mes L. Leysath; Joshua D. Currie; Donna J. Webb; Alissa M. Weaver

BACKGROUND Lamellipodial protrusion, which is the first step in cell movement, is driven by actin assembly and requires activity of the Arp2/3 actin-nucleating complex. However, it is unclear how actin assembly is dynamically regulated to support effective cell migration. RESULTS Cells deficient in cortactin have impaired cell migration and invasion. Kymography analyses of live-cell imaging studies demonstrate that cortactin-knockdown cells have a selective defect in the persistence of lamellipodial protrusions. The motility and protrusion defects are fully rescued by cortactin molecules, provided both the Arp2/3 complex and F-actin binding sites are intact. Consistent with this requirement for simultaneous contacts with Arp2/3 and F-actin, cortactin is recruited by Arp2/3 complex to lamellipodia and binds with a higher affinity to ATP/ADP-Pi-F-actin than to ADP-F-actin. In situ labeling of lamellipodia revealed that the relative levels of free barbed ends of actin filaments are reduced by over 30% in the cortactin-knockdown cells; however, there is no change in Arp2/3-complex localization to lamellipodia. Cortactin-knockdown cells also have a selective defect in the assembly of new adhesions in protrusions, as assessed by analysis of GFP-paxillin dynamics in living cells. CONCLUSIONS Cortactin enhances lamellipodial persistence, at least in part through regulation of Arp2/3 complex. The presence of cortactin also enhances the rate of new adhesion formation in lamellipodia. In vivo, these functions may be important during directed cell motility.


Journal of Histochemistry and Cytochemistry | 2005

Tissue-specific tropomyosin isoform composition.

Galina Schevzov; Bernadette Vrhovski; Nicole S. Bryce; Sarah Elmir; Min Ru Qiu; Geraldine M. O'Neill; Nan Yang; Nicole M. Verrills; Maria Kavallaris; Peter Gunning

Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells (Gunning et al. 1998b). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems.


Chemical Science | 2013

Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study

Anna K. Renfrew; Nicole S. Bryce; Trevor W. Hambley

We present a bioreductively activated cobalt(III) carrier system for the delivery of curcumin with enhanced drug stability, tumour penetration and efficacy in hypoxic tumour regions. Curcumin is a natural product with potent anticancer activity but low bioavailability and serum stability. With the aim of overcoming these limitations, we prepared a cobalt(III) prodrug of curcumin and compared the stability, cytotoxicity and cellular uptake with those of the free drug. Using a combination of fluorescence lifetime imaging and X-ray absorption spectroscopy, we demonstrated that curcumin is released from the cobalt carrier complex in tumour cells, with strong evidence to suggest that the process occurs via reduction of the cobalt centre. Furthermore, fluorescence lifetime imaging in solid tumour models showed that the cobalt complex delivered curcumin uniformly throughout the tumour model, while free curcumin only accumulated on the outer edges. For comparison, we also investigated the isoelectronic ruthenium(II) complex and found its properties and biological activity to be very different to those of the cobalt analogue.


Journal of Neuro-oncology | 2012

p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells

Yiu To Yeung; Nicole S. Bryce; Seray Adams; Nady Braidy; Mari Konayagi; Kerrie L. McDonald; Charles Teo; Gilles J. Guillemin; Thomas Grewal; Lenka Munoz

Increasing evidence suggests that an inflammatory microenvironment promotes invasion by glioblastoma (GBM) cells. Together with p38 mitogen-activated protein kinase (MAPK) activation being regarded as promoting inflammation, we hypothesized that elevated inflammatory cytokine secretion and p38 MAPK activity contribute to expansion of GBMs. Here we report that IL-1β, IL-6, and IL-8 levels and p38 MAPK activity are elevated in human glioblastoma specimens and that p38 MAPK inhibitors attenuate the secretion of pro-inflammatory cytokines by microglia and glioblastoma cells. RNAi knockdown and immunoprecipitation experiments suggest that the p38α MAPK isoform drives inflammation in GBM cells. Importantly, p38 MAPK inhibition strongly reduced invasion of U251 glioblastoma cells in an inflammatory microenvironment, providing evidence for a p38 MAPK-regulated link between inflammation and invasiveness in GBM pathophysiology.


Metallomics | 2012

Getting to the core of platinum drug bio-distributions: the penetration of anti-cancer platinum complexes into spheroid tumour models

Jenny Z. Zhang; Nicole S. Bryce; Antonio Lanzirotti; Catherine K. J. Chen; David Paterson; Martin D. de Jonge; Daryl L. Howard; Trevor W. Hambley

Elemental mapping and fluorescence imaging techniques are frequently employed to probe the distribution of platinum-based chemotherapeutics within biological systems. Although useful, these techniques have unique limitations: elemental mapping methods, such as those that use particle beams, typically require rigorous sample preparation that can alter chemical distributions, whilst in situ visible fluorescence studies require fluorescent-tagging of the platinum component and may be confounded by factors such as ligand loss. The present study aimed to establish reliable methods for accurately probing the bio-distribution of platinum compounds within the model tumour micro-environment of the well characterised DLD-1 colorectal cancer cell spheroids. 3D X-ray fluorescence computed micro-tomography (XRF-CT) was performed on intact untreated spheroids to determine the effect of physical sectioning and chemical fixation on elemental distributions. It was revealed for the first time that cisplatin can readily penetrate through DLD-1 spheroids and accumulate in the central hypoxic and necrotic regions of the spheroids. Furthermore, formalin fixing was shown to cause significant changes to the distributions and concentrations of the elements, particularly in the cases of platinum and zinc. This effect was not observed in the cryo-fixed and cryo-sectioned samples. X-ray fluorescence microscopy (XFM) was used to re-examine the fate of platinum in the previously reported fluorescence distribution studies of platinum(ii) complexes tagged with fluorescent anthraquinone moieties. In contrast to the fluorescence distributions, in which fluorescence was observed predominantly around the periphery of the spheroids, the XFM revealed a high level of platinum in the spheroid centre, indicating that ligand exchange occurred within the peripheral cell layers. Both the platinum maps and the fluorescence images exhibit similar diffusion trends, supporting the conclusion that charge on the compound can slow cellular uptake can enhance tumour penetration.


Chemistry: A European Journal | 2015

Cobalt(III) Chaperone Complexes of Curcumin: Photoreduction, Cellular Accumulation and Light-Selective Toxicity towards Tumour Cells

Anna K. Renfrew; Nicole S. Bryce; Trevor W. Hambley

Light-activated prodrugs offer the potential for highly selective tumour targeting. However, the application of many photoactivated chemotherapeutics is limited by a requirement for oxygen, or for short activation wavelengths that can damage surrounding tissue. Herein, we present a series of cobalt(III)-curcumin prodrugs that can be activated by visible light under both oxygenated and hypoxic conditions. Furthermore, the photoproduct can be controlled by the activation wavelength: green light yields free curcumin, whereas blue light induces photolysis of curcumin to a phototoxic product. Confocal fluorescence microscopy and phototocytotoxicity studies in DLD-1 and MCF-7 tumour cells demonstrated that the cobalt(III) prodrugs are nontoxic in the dark but accumulate in significant concentrations in the cell membrane. When cells were treated with light for 15  min, the cytotoxicity of the cobalt complexes increased by up to 20-fold, whereas free curcumin exhibited only a two-fold increase in cytotoxicity. The nature of the ancillary ligand and cobalt reduction potential were found to strongly influence the stability and biological activity of the series.


Journal of Medicinal Chemistry | 2012

Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex.

Natsuho Yamamoto; Anna K. Renfrew; Byung J. Kim; Nicole S. Bryce; Trevor W. Hambley

The rational design of prodrugs for selective accumulation and activation in tumor microenvironments is one of the most promising strategies for minimizing the toxicity of anticancer drugs. Manipulation of the charge of the prodrug represents a potential mechanism to selectively deliver the prodrug to the acidic tumor microenvironment. Here we present delivery of a fluorescent coumarin using a cobalt(III) chaperone to target hypoxic regions, and charged ligands for pH selectivity. Protonation or deprotonation of the complexes over a physiologically relevant pH range resulted in pH dependent accumulation of the fluorophore in colon cancer cells. Furthermore, in a spheroid solid tumor model, the anionic complexes exhibited preferential release of the fluorophore in the acidic/hypoxic region. By fine-tuning the physicochemical properties of the cobalt-chaperone moiety, we have demonstrated selective drug release in the acidic and hypoxic tumor microenvironment.


European Journal of Cell Biology | 2008

Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility

Sarah J. Creed; Nicole S. Bryce; Perttu Naumanen; Ron P. Weinberger; Pekka Lappalainen; Justine R. Stehn; Peter Gunning

Two tropomyosin isoforms, human Tm5(NM1) and Tm3, were over-expressed in B35 rat neuro-epithelial cells to examine preferential associations between specific actin and tropomyosin isoforms and to determine the role tropomyosin isoforms play in regulating the drug susceptibility of actin filament populations. Immunofluorescence staining and Western blot analysis were used to study the organisation of specific filament populations and their response to treatment with two widely used actin-destabilising drugs, latrunculin A and cytochalasin D. In Tm5(NM1) cells, we observed large stress fibres which showed predominant co-localisation of beta-actin and low-molecular-weight gamma-tropomyosin isoforms. Tm3 cells had an abundance of cellular protrusions which contained both the beta- and gamma-actin isoforms, predominately populated by high-molecular-weight alpha- and beta-tropomyosin isoforms. The stress fibres observed in Tm5(NM1) cells were more resistant to both latrunculin A and cytochalasin D than filaments containing the high-molecular-weight tropomyosins observed in Tm3 cells. Knockdown of the over-expressed Tm5(NM1) isoform with a human-specific Tm5(NM1) siRNA reversed the phenotype and caused a reversal in the observed drug resistance. We conclude that there are preferential associations between specific actin and tropomyosin isoforms, which are cell type specific, but it is the tropomyosin composition of a filament population which determines the susceptibility to actin-targeting drugs.


Chemical Science | 2011

Visualising the hypoxia selectivity of cobalt(III) prodrugs

Byung J. Kim; Trevor W. Hambley; Nicole S. Bryce

Hypoxic cancer cells have a more aggressive phenotype than cells in a normoxic environment and are often refractory to current chemotherapy protocols due to an altered proliferation rate. They also represent a means of targeting cancer chemotherapy. We have developed a 3-dimensional cell culture model that readily identifies live hypoxic cells by expression of the Eos photo-convertible green fluorescent protein. Using this model, we have examined the diffusion and hypoxia selectivity of two model Co(III) based compounds. The Co(III) compounds have been designed to target hypoxic cells within a tumour and have fluorescent axial ligands. The fluorescent ligands function as model cytotoxins and their fluorescence is quenched on binding to Co(III). The ligands are released upon the reduction of Co(III) to Co(II) and the recovery of fluorescence enables the detection of the released ligands by confocal microscopy. Despite similarities in electrochemical potential and cytotoxicity, the penetration of the compounds into spheroids and uptake into hypoxic cells was found to differ depending on the properties of the released ligand.


PLOS Computational Biology | 2010

Linking changes in epithelial morphogenesis to cancer mutations using computational modeling.

Katarzyna A. Rejniak; Shizhen E. Wang; Nicole S. Bryce; Hang Chang; Bahram Parvin; Jerome Jourquin; Lourdes Estrada; Joe W. Gray; Carlos L. Arteaga; Alissa M. Weaver; Vito Quaranta; Alexander R. A. Anderson

Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini). In order to shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line, MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies onto in silico ones we have generated a means of linking the morphological and molecular scales via computational modeling. Thus, IBCell in combination with 3D acini cultures can form a computational/experimental platform for suggesting the relationship between the histopathology of neoplastic lesions and their underlying molecular defects.

Collaboration


Dive into the Nicole S. Bryce's collaboration.

Top Co-Authors

Avatar

Peter Gunning

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edna C. Hardeman

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Galina Schevzov

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renee Whan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge