Renu Batra-Safferling
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renu Batra-Safferling.
ACS Chemical Neuroscience | 2010
Susanne Aileen Funke; Thomas van Groen; Inga Kadish; Dirk Bartnik; Luitgard Nagel-Steger; Oleksandr Brener; Torsten Sehl; Renu Batra-Safferling; Christine Moriscot; Guy Schoehn; Anselm H. C. Horn; Andreas Müller-Schiffmann; Carsten Korth; Heinrich Sticht; Dieter Willbold
Several lines of evidence suggest that the amyloid-β-peptide (Aβ) plays a central role in the pathogenesis of Alzheimers disease (AD). Not only Aβ fibrils but also small soluble Aβ oligomers in particular are suspected to be the major toxic species responsible for disease development and progression. The present study reports on in vitro and in vivo properties of the Aβ targeting d-enantiomeric amino acid peptide D3. We show that next to plaque load and inflammation reduction, oral application of the peptide improved the cognitive performance of AD transgenic mice. In addition, we provide in vitro data elucidating the potential mechanism underlying the observed in vivo activity of D3. These data suggest that D3 precipitates toxic Aβ species and converts them into nonamyloidogenic, nonfibrillar, and nontoxic aggregates without increasing the concentration of monomeric Aβ. Thus, D3 exerts an interesting and novel mechanism of action that abolishes toxic Aβ oligomers and thereby supports their decisive role in AD development and progression.
Journal of Biological Chemistry | 2006
Renu Batra-Safferling; Karin Abarca-Heidemann; Heinz G. Körschen; Christos Tziatzios; Matthias Stoldt; Ivan L. Budyak; Dieter Willbold; Harald Schwalbe; Judith Klein-Seetharaman; U. Benjamin Kaupp
The outer segment of vertebrate photoreceptors is a specialized compartment that hosts all the signaling components required for visual transduction. Specific to rod photoreceptors is an unusual set of three glutamic acid-rich proteins (GARPs) as follows: two soluble forms, GARP1 and GARP2, and the N-terminal cytoplasmic domain (GARP′ part) of the B1 subunit of the cyclic GMP-gated channel. GARPs have been shown to interact with proteins at the rim of the disc membrane. Here we characterized native GARP1 and GARP2 purified from bovine rod photoreceptors. Amino acid sequence analysis of GARPs revealed structural features typical of “natively unfolded” proteins. By using biophysical techniques, including size-exclusion chromatography, dynamic light scattering, NMR spectroscopy, and circular dichroism, we showed that GARPs indeed exhibit a large degree of intrinsic disorder. Analytical ultracentrifugation and chemical cross-linking showed that GARPs exist in a monomer/multimer equilibrium. The results suggested that the function of GARP proteins is linked to their structural disorder. They may provide flexible spacers or linkers tethering the cyclic GMP-gated channel in the plasma membrane to peripherin at the disc rim to produce a stack of rings of these protein complexes along the long axis of the outer segment. GARP proteins could then provide the environment needed for protein interactions in the rim region of discs.
Journal of Molecular Biology | 2012
Franco Circolone; Joachim Granzin; Katrin Jentzsch; Thomas Drepper; Karl-Erich Jaeger; Dieter Willbold; Ulrich Krauss; Renu Batra-Safferling
Blue-light photoreceptors containing light–oxygen–voltage (LOV) domains regulate a myriad of different physiological responses in both eukaryotes and prokaryotes. Their light sensitivity is intricately linked to the photochemistry of the non-covalently bound flavin mononucleotide (FMN) chromophore that forms a covalent adduct with a conserved cysteine residue in the LOV domain upon illumination with blue light. All LOV domains undergo the same primary photochemistry leading to adduct formation; however, considerable variation is found in the lifetime of the adduct state that varies from seconds to several hours. The molecular mechanism underlying this variation among the structurally conserved LOV protein family is not well understood. Here, we describe the structural characterization of PpSB1-LOV, a very slow cycling full-length LOV protein from the Gram-negative bacterium Pseudomonas putida KT2440. Its crystal structure reveals a novel dimer interface that is mediated by N- and C-terminal auxiliary structural elements and a unique cluster of four arginine residues coordinating with the FMN-phosphate moiety. Site-directed mutagenesis of two arginines (R61 and R66) in PpSB1-LOV resulted in acceleration of the dark recovery reaction approximately by a factor of 280. The presented structural and biochemical data suggest a direct link between structural features and the slow dark recovery observed for PpSB1-LOV. The overall structural arrangement of PpSB1-LOV, together with a complementary phylogenetic analysis, highlights a common ancestry of bacterial LOV photoreceptors and Per-ARNT-Sim chemosensors.
Scientific Reports | 2015
Joachim Granzin; Andreas Stadler; Anneliese Cousin; Ramona Schlesinger; Renu Batra-Safferling
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.
PLOS ONE | 2013
Filip Kovacic; Joachim Granzin; Susanne Wilhelm; Biserka Kojić-Prodić; Renu Batra-Safferling; Karl-Erich Jaeger
TesA from Pseudomonas aeruginosa belongs to the GDSL hydrolase family of serine esterases and lipases that possess a broad substrate- and regiospecificity. It shows high sequence homology to TAP, a multifunctional enzyme from Escherichia coli exhibiting thioesterase, lysophospholipase A, protease and arylesterase activities. Recently, we demonstrated high arylesterase activity for TesA, but only minor thioesterase and no protease activity. Here, we present a comparative analysis of TesA and TAP at the structural, biochemical and physiological levels. The crystal structure of TesA was determined at 1.9 Å and structural differences were identified, providing a possible explanation for the differences in substrate specificities. The comparison of TesA with other GDSL-hydrolase structures revealed that the flexibility of active-site loops significantly affects their substrate specificity. This assumption was tested using a rational approach: we have engineered the putative coenzyme A thioester binding site of E. coli TAP into TesA of P. aeruginosa by introducing mutations D17S and L162R. This TesA variant showed increased thioesterase activity comparable to that of TAP. TesA is the first lysophospholipase A described for the opportunistic human pathogen P. aeruginosa. The enzyme is localized in the periplasm and may exert important functions in the homeostasis of phospholipids or detoxification of lysophospholipids.
Biological Chemistry | 2010
Renu Batra-Safferling; Joachim Granzin; Susanne Mödder; Silke Hoffmann; Dieter Willbold
Abstract Src homology 3 (SH3) domains are mediators of protein-protein interactions. They comprise approximately 60 amino acid residues and are found in many intracellular signaling proteins. Here, we present the crystal structure of the SH3 domain from phosphatidylinositol 3-kinase (PI3K) in complex with the 12-residue proline-rich peptide PD1R (HSKRPLPPLPSL). The crystal structure of the PI3K SH3-PD1R complex at a resolution of 1.7 Å reveals type I ligand orientation of the bound peptide with an extended conformation where the central portion forms a left-handed type II polyproline (PPII) helix. The overall structure of the SH3 domain shows minimal changes on ligand binding. In addition, we also attempted crystallization with another peptide ligand (PD1) where the residue at anchor position P-3 is a tyrosine. The crystals obtained did not contain the PD1 ligand; instead, the ligand binding site is partially occupied by residues Arg18 and Trp55 from the symmetry-related PI3K SH3 molecule. Considering these crystal structures of PI3K SH3 together with published reports, we provide a comparative analysis of protein-ligand interactions that has helped us identify the individual residues which play an important role in defining target specificity.
FEBS Open Bio | 2016
Filip Kovacic; Florian Bleffert; Muttalip Caliskan; Susanne Wilhelm; Joachim Granzin; Renu Batra-Safferling; Karl-Erich Jaeger
Pseudomonas aeruginosa strain 1001 produces an esterase (EstA) that can hydrolyse the racemic methyl ester of β‐acetylthioisobutyrate to produce the (D)‐enantiomer, which serves as a precursor of captopril, a drug used for treatment of hypertension. We show here that PA2949 from P. aeruginosa PA01, a homologue of EstA, can efficiently be expressed in an enzymatically active form in E. coli. The enzyme is membrane‐associated as demonstrated by cell fractionation studies. PA2949 was purified to homogeneity after solubilisation with the nonionic detergent, Triton X‐100, and was shown to possess a conserved esterase catalytic triad consisting of Ser137–His258–Asp286. Our results should allow the development of an expression and purification strategy to produce this biotechnologically relevant esterase in a pure form with a high yield.
Scientific Reports | 2017
Vladimir Arinkin; Joachim Granzin; Katrin Röllen; Ulrich Krauss; Karl-Erich Jaeger; Dieter Willbold; Renu Batra-Safferling
Unique features of Light-Oxygen-Voltage (LOV) proteins like relatively small size (~12–19 kDa), inherent modularity, highly-tunable photocycle and oxygen-independent fluorescence have lately been exploited for the generation of optical tools. Structures of LOV domains reported so far contain a flavin chromophore per protein molecule. Here we report two new findings on the short LOV protein W619_1-LOV from Pseudomonas putida. First, the apo-state crystal structure of W619_1-LOV at 2.5 Å resolution reveals conformational rearrangements in the secondary structure elements lining the chromophore pocket including elongation of the Fα helix, shortening of the Eα-Fα loop and partial unfolding of the Eα helix. Second, the apo W619_1-LOV protein binds both natural and structurally modified flavin chromophores. Remarkably different photophysical and photochemical properties of W619_1-LOV bound to 7-methyl-8-chloro-riboflavin (8-Cl-RF) and lumichrome imply application of these variants as novel optical tools as they offer advantages such as no adduct state formation, and a broader choice of wavelengths for in vitro studies.
PLOS ONE | 2018
Katrin Röllen; Joachim Granzin; Renu Batra-Safferling; Andreas Stadler
Light, oxygen, voltage (LOV) photoreceptors consist of conserved photo-responsive domains in bacteria, archaea, plants and fungi, and detect blue-light via a flavin cofactor. We investigated the blue-light induced conformational transition of the dimeric photoreceptor PpSB1-LOV-R66I from Pseudomonas putida in solution by using small-angle X-ray scattering (SAXS). SAXS experiments of the fully populated light- and dark-states under steady-state conditions revealed significant structural differences between the two states that are in agreement with the known structures determined by crystallography. We followed the transition from the light- to the dark-state by using SAXS measurements in real-time. A two-state model based on the light- and dark-state conformations could describe the measured time-course SAXS data with a relaxation time τREC of ~ 34 to 35 min being larger than the recovery time found with UV/vis spectroscopy. Unlike the flavin chromophore-based UV/vis method that is sensitive to the local chromophore environment in flavoproteins, SAXS-based assay depends on protein conformational changes and provides with an alternative to measure the recovery kinetics.
Archive | 2017
Ramona Schlesinger; Anneliese Cousin; Joachim Granzin; Renu Batra-Safferling
Protein purity and yield are two critical parameters for successful protein characterization using structural techniques such as X-ray crystallography, NMR, and several other biophysical methods. The yeast Saccharomyces cerevisiae is one of the popular eukaryotic model systems for overexpression and subsequent purification of recombinant proteins. Here, we describe a protocol for cloning, overexpression, purification, and crystallization of arrestin-1 and its splice variant p44 from yeast. The purification protocol involves a single-affinity chromatography step on a Strep-Tactin column. Highly purified arrestins can be concentrated up to 15mg/mL using ultrafiltration and can be stored in the frozen state for several months without any loss of functionality.