Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renwu Zhou is active.

Publication


Featured researches published by Renwu Zhou.


Applied Physics Letters | 2014

Atmospheric cold plasma jet for plant disease treatment

Xianhui Zhang; Dongping Liu; Renwu Zhou; Ying Song; Yue Sun; Qi Zhang; Jinhai Niu; Hongyu Fan; Size Yang

This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of <2 mm can completely recover from the fungus-infected state. The plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.


Scientific Reports | 2016

Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth.

Renwu Zhou; Rusen Zhou; Xianhui Zhang; Jinxing Zhuang; Size Yang; Kateryna Bazaka; K. Ostrikov

Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.


PLOS ONE | 2016

Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

Renwu Zhou; Rusen Zhou; Jinxing Zhuang; Zichao Zong; Xianhui Zhang; Dongping Liu; Kateryna Bazaka; K. Ostrikov

Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.


Scientific Reports | 2016

Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media.

Renwu Zhou; Rusen Zhou; Xianhui Zhang; Jiangwei Li; Xingquan Wang; Qiang Chen; Size Yang; Zhong Chen; Kateryna Bazaka; K. Ostrikov

Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency.


Applied and Environmental Microbiology | 2015

Inactivation of Escherichia coli Cells in Aqueous Solution by Atmospheric-Pressure N2, He, Air, and O2 Microplasmas

Renwu Zhou; Xianhui Zhang; Zhenhua Bi; Zichao Zong; Jinhai Niu; Ying Song; Dongping Liu; Size Yang

ABSTRACT Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to inactivate Escherichia coli cells suspended in aqueous solution. Measurements show that the efficiency of inactivation of E. coli cells is strongly dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2 and He microplasma arrays, air and O2 microplasma arrays may be utilized to more efficiently kill E. coli cells in aqueous solution. The efficiencies of inactivation of E. coli cells in water can be well described by using the chemical reaction rate model, where reactive oxygen species play a crucial role in the inactivation process. Analysis indicates that plasma-generated reactive species can react with E. coli cells in water by direct or indirect interactions.


Scientific Reports | 2017

Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma

Xingquan Wang; Renwu Zhou; Gerard J. J. B. de Groot; Kateryna Bazaka; Anthony B. Murphy; K. Ostrikov

Cold atmospheric plasma has recently emerged as a simple, low-cost and efficient physical method for inducing significant biological responses in seeds and plants without the use of traditional, potentially environmentally-hazardous chemicals, fungicides or hormones. While the beneficial effects of plasma treatment on seed germination, disease resistance and agricultural output have been reported, the mechanisms that underpin the observed biological responses are yet to be fully described. This study employs Fourier Transform Infrared (FTIR) spectroscopy and emission spectroscopy to capture chemical interactions between plasmas and seed surfaces with the aim to provide a more comprehensive account of plasma−seed interactions. FTIR spectroscopy of the seed surface confirms plasma-induced chemical etching of the surface. The etching facilitates permeation of water into the seed, which is confirmed by water uptake measurements. FTIR of exhaust and emission spectra of discharges show oxygen-containing species known for their ability to stimulate biochemical processes and deactivate pathogenic microorganisms. In addition, water gas, CO2, CO and molecules containing −C(CH3)3− moieties observed in FTIR spectra of the exhaust gas during plasma treatment may be partly responsible for the plasma chemical etching of seed surface through oxidizing the organic components of the seed coat.


Chinese Physics B | 2016

Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays*

Renwu Zhou; Rusen Zhou; Jinxing Zhuang; Jiangwei Li; Mao-Dong Chen; Xianhui Zhang; Dongping Liu; K. Ostrikov; Size Yang

A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 10 3 /cm 2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99 for 2-min treatment.


Bioresource Technology | 2016

Fast liquefaction of bamboo shoot shell with liquid-phase microplasma assisted technology

Rusen Zhou; Renwu Zhou; Shuai Wang; Zhou Lan; Xianhui Zhang; Yingwu Yin; Song Tu; Size Yang; Liyi Ye

In this study, liquid-phase microplasma technology (LPMPT) was employed to facilitate the liquefaction of bamboo shoot shell (BSS) in polyethylene glycol 400 (PEG 400) and ethylene glycol (EG) mixture. Effects of liquefaction conditions such as liquefaction time, catalyst percentage, solvent/BSS mass ratio, PEG/EG volume ratio on liquefaction were investigated experimentally. The results showed that the introduction of LPMPT significantly shortened the liquefaction time to 3min without extra heating. The liquefaction yield reached 96.73% under the optimal conditions. The formation of massive reactive species and instantaneous heat accumulation both contributed to the rapid liquefaction of BSS. Thus, LPMPT could be considered as a simple and efficient method for the assistance of biomass fast liquefaction.


Journal of Applied Physics | 2018

Linear-field plasma jet arrays excited by high-voltage alternating current and nanosecond pulses

Ruoyu Zhou; Bo Zhang; Renwu Zhou; Feng Liu; Zhi Fang; K. Ostrikov

Atmospheric pressure plasma jet arrays can expand the treatment dimension of a single jet to large scales effectively, and the arrays with a good downstream uniformity have a great potential for applications in the materials surface treatment and biomedicine. In this paper, a linear-field jet array with a ring-ring electrode structure in Ar is excited by alternating current (AC) and nanosecond (ns) pulse voltage, and the characteristics and downstream uniformity of the array and their dependence on the applied voltage and gas flow rate are investigated and compared through optical, electrical, and Schlieren diagnosis. The electrical and hydrodynamic interactions between the jets in the array are analyzed and discussed. The results show that the ns pulse excited jet arrays can generate relatively large-scale plasma with better uniformity, longer plumes, and higher intensity active species with a higher energy efficiency than the AC excited ones. No visible deviation of the plume and gas flow trajectories in the light emission and Schlieren images is observed for the ns pulse excited arrays. On the other hand, deviation of plume trajectories is shown to depend on the applied voltage and the gas flow rate for the AC excited arrays. The shorter duration of the interaction of the ns pulse excited jet arrays compared with that of the AC excited jet arrays results in the weaker effects of the Coulomb repellence force and the gas heating, which helps to maintain the uniformity of jet arrays. The reported results can help to design controllable and scalable plasma jet arrays in the economic Ar with good uniformity and higher energy efficiency for material surface and biomedical treatments.


Bioresource Technology | 2017

Mechanism and optimization for plasma electrolytic liquefaction of sawdust

Dengke Xi; Rusen Zhou; Renwu Zhou; Xianhui Zhang; Liyi Ye; Jiangwei Li; Congcong Jiang; Qiang Chen; Guoya Sun; Qing Huo Liu; Size Yang

In this work, plasma electrolytic technology was successfully employed to achieve fast liquefaction of sawdust when polyethylene glycol 200 (PEG 200) and glycerol were used as liquefacient in the presence of the catalyst sulfuric acid. Results showed that H ions could heat the solution effectively during the plasma electrolytic liquefaction (PEL) process. The influence of some key parameters including liquefaction time, catalyst percentage, liquefacient/sawdust mass ratio, and PEG 200/glycerol molar ratio on the liquefaction yield were investigated. Based on the results of single factor experiments, response surface methodology (RSM) was applied to optimize the liquefaction process. Under the optimal conditions that is liquefaction time of 5.10min, catalyst percentage of 1.05%, liquefacient/sawdust mass ratio of 7.12/1 and PEG 200/glycerol molar ratio of 1.40/1, the liquefaction yield reached 99.48%. Hence, it could be concluded that PEL has good application potential for biomass fast liquefaction.

Collaboration


Dive into the Renwu Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Ostrikov

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kateryna Bazaka

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dongping Liu

Dalian Nationalities University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhai Niu

Dalian Nationalities University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge