Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reto Burri is active.

Publication


Featured researches published by Reto Burri.


Nature | 2012

The genomic landscape of species divergence in Ficedula flycatchers

Hans Ellegren; Linnéa Smeds; Reto Burri; Pall Olason; Niclas Backström; Takeshi Kawakami; Axel Künstner; Hannu Mäkinen; Krystyna Nadachowska-Brzyska; Anna Qvarnström; Severin Uebbing; Jochen B. W. Wolf

Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre- as well as postzygotic isolation. We sequenced and assembled the 1.1-Gb flycatcher genome, physically mapped the assembly to chromosomes using a low-density linkage map and re-sequenced population samples of each species. Here we show that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 ‘divergence islands’ showing up to 50-fold higher sequence divergence than the genomic background. These non-randomly distributed islands, with between one and three regions of elevated divergence per chromosome irrespective of chromosome size, are characterized by reduced levels of nucleotide diversity, skewed allele-frequency spectra, elevated levels of linkage disequilibrium and reduced proportions of shared polymorphisms in both species, indicative of parallel episodes of selection. Proximity of divergence peaks to genomic regions resistant to sequence assembly, potentially including centromeres and telomeres, indicate that complex repeat structures may drive species divergence. A much higher background level of species divergence of the Z chromosome, and a lower proportion of shared polymorphisms, indicate that sex chromosomes and autosomes are at different stages of speciation. This study provides a roadmap to the emerging field of speciation genomics.


Evolution | 2010

Local adaptation maintains clinal variation in melanin-based coloration of European barn owls (Tyto alba).

Sylvain Antoniazza; Reto Burri; Luca Fumagalli; Jérôme Goudet; Alexandre Roulin

Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin‐based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owls coloration varies continuously from white in southwestern Europe to reddish‐brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.


PLOS Genetics | 2013

Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data

Krystyna Nadachowska-Brzyska; Reto Burri; Pall Olason; Takeshi Kawakami; Linnéa Smeds; Hans Ellegren

Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.


Journal of Evolutionary Biology | 2012

Local adaptation and matching habitat choice in female barn owls with respect to melanic coloration

Amélie N. Dreiss; Sylvain Antoniazza; Reto Burri; Luca Fumagalli; C Sonnay; C Frey; Jérôme Goudet; Alexandre Roulin

Local adaptation is a major mechanism underlying the maintenance of phenotypic variation in spatially heterogeneous environments. In the barn owl (Tyto alba), dark and pale reddish‐pheomelanic individuals are adapted to conditions prevailing in northern and southern Europe, respectively. Using a long‐term dataset from Central Europe, we report results consistent with the hypothesis that the different pheomelanic phenotypes are adapted to specific local conditions in females, but not in males. Compared to whitish females, reddish females bred in sites surrounded by more arable fields and less forests. Colour‐dependent habitat choice was apparently beneficial. First, whitish females produced more fledglings when breeding in wooded areas, whereas reddish females when breeding in sites with more arable fields. Second, cross‐fostering experiments showed that female nestlings grew wings more rapidly when both their foster and biological mothers were of similar colour. The latter result suggests that mothers should particularly produce daughters in environments that best match their own coloration. Accordingly, whiter females produced fewer daughters in territories with more arable fields. In conclusion, females displaying alternative melanic phenotypes bred in habitats providing them with the highest fitness benefits. Although small in magnitude, matching habitat selection and local adaptation may help maintain variation in pheomelanin coloration in the barn owl.


Molecular Biology and Evolution | 2008

Evolutionary Patterns of MHC Class II B in Owls and Their Implications for the Understanding of Avian MHC Evolution

Reto Burri; Hélène Niculita Hirzel; Nicolas Salamin; Alexandre Roulin; Luca Fumagalli

Owing to its special mode of evolution and central role in the adaptive immune system, the major histocompatibility complex (MHC) has become the focus of diverse disciplines such as immunology, evolutionary ecology, and molecular evolution. MHC evolution has been studied extensively in diverse vertebrate lineages over the last few decades, and it has been suggested that birds differ from the established mammalian norm. Mammalian MHC genes evolve independently, and duplication history (i.e., orthology) can usually be traced back within lineages. In birds, this has been observed in only 3 pairs of closely related species. Here we report strong evidence for the persistence of orthology of MHC genes throughout an entire avian order. Phylogenetic reconstructions of MHC class II B genes in 14 species of owls trace back orthology over tens of thousands of years in exon 3. Moreover, exon 2 sequences from several species show closer relationships than sequences within species, resembling transspecies evolution typically observed in mammals. Thus, although previous studies suggested that long-term evolutionary dynamics of the avian MHC was characterized by high rates of concerted evolution, resulting in rapid masking of orthology, our results question the generality of this conclusion. The owl MHC thus opens new perspectives for a more comprehensive understanding of avian MHC evolution.


Molecular Biology and Evolution | 2010

Adaptive Divergence of Ancient Gene Duplicates in the Avian MHC Class II β

Reto Burri; Nicolas Salamin; Romain A. Studer; Alexandre Roulin; Luca Fumagalli

Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.


Systematic Biology | 2015

Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data

Alexander Nater; Reto Burri; Takeshi Kawakami; Linnéa Smeds; Hans Ellegren

Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow.


Molecular Ecology | 2016

PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers

Krystyna Nadachowska-Brzyska; Reto Burri; Linnéa Smeds; Hans Ellegren

Climatic fluctuations during the Quaternary period governed the demography of species and contributed to population differentiation and ultimately speciation. Studies of these past processes have previously been hindered by a lack of means and genetic data to model changes in effective population size (Ne) through time. However, based on diploid genome sequences of high quality, the recently developed pairwise sequentially Markovian coalescent (PSMC) can estimate trajectories of changes in Ne over considerable time periods. We applied this approach to resequencing data from nearly 200 genomes of four species and several populations of the Ficedula species complex of black‐and‐white flycatchers. Ne curves of Atlas, collared, pied and semicollared flycatcher converged 1–2 million years ago (Ma) at an Ne of ≈ 200 000, likely reflecting the time when all four species last shared a common ancestor. Subsequent separate Ne trajectories are consistent with lineage splitting and speciation. All species showed evidence of population growth up until 100–200 thousand years ago (kya), followed by decline and then start of a new phase of population expansion. However, timing and amplitude of changes in Ne differed among species, and for pied flycatcher, the temporal dynamics of Ne differed between Spanish birds and central/northern European populations. This cautions against extrapolation of demographic inference between lineages and calls for adequate sampling to provide representative pictures of the coalescence process in different species or populations. We also empirically evaluate criteria for proper inference of demographic histories using PSMC and arrive at recommendations of using sequencing data with a mean genome coverage of ≥18X, a per‐site filter of ≥10 reads and no more than 25% of missing data.


Behavioral Ecology and Sociobiology | 2011

Eumelanin-based coloration and fitness parameters in birds: a meta-analysis

Joël Meunier; Susana Figueiredo Pinto; Reto Burri; Alexandre Roulin

Although melanin is the most common pigment in animal integuments, the adaptive function of variation in melanin-based coloration remains poorly understood. The individual fitness returns associated with melanin pigments can be variable across species as these pigments can have physical and biological protective properties and genes involved in melanogenesis may vary in the intensity of pleiotropic effects. Moreover, dark and pale coloration can also enhance camouflage in alternative habitats and melanin-based coloration can be involved in social interactions. We investigated whether darker or paler individuals achieve a higher fitness in birds, a taxon wherein associations between melanin-based coloration and fitness parameters have been studied in a large number of species. A meta-analysis showed that the degree of melanin-based coloration was not significantly associated with laying date, clutch size, brood size, and survival across 26 species. Similar results were found when restricting the analyses to non-sexually dimorphic birds, colour polymorphic and monomorphic species, in passerines and non-passerines and in species for which inter-individual variation in melanism is due to colour intensity. However, eumelanic coloration was positively associated with clutch and brood size in sexually dimorphic species and those that vary in the size of black patches, respectively. Given that greater extent of melanin-based coloration was positively associated with reproductive parameters and survival in some species but negatively in other species, we conclude that in birds the sign and magnitude of selection exerted on melanin-based coloration is species- or trait-specific.


Nature Communications | 2015

Evolutionary analysis of the female-specific avian W chromosome.

Linnéa Smeds; Vera Warmuth; Paulina Bolívar; Severin Uebbing; Reto Burri; Alexander Suh; Alexander Nater; Stanislav Bureš; László Zsolt Garamszegi; Silje Hogner; Juan Moreno; Anna Qvarnström; Milan Ružić; Stein-Are Sæther; Glenn-Peter Sætre; János Török; Hans Ellegren

The typically repetitive nature of the sex-limited chromosome means that it is often excluded from or poorly covered in genome assemblies, hindering studies of evolutionary and population genomic processes in non-recombining chromosomes. Here, we present a draft assembly of the non-recombining region of the collared flycatcher W chromosome, containing 46 genes without evidence of female-specific functional differentiation. Survival of genes during W chromosome degeneration has been highly non-random and expression data suggest that this can be attributed to selection for maintaining gene dose and ancestral expression levels of essential genes. Re-sequencing of large population samples revealed dramatically reduced levels of within-species diversity and elevated rates of between-species differentiation (lineage sorting), consistent with low effective population size. Concordance between W chromosome and mitochondrial DNA phylogenetic trees demonstrates evolutionary stable matrilineal inheritance of this nuclear–cytonuclear pair of chromosomes. Our results show both commonalities and differences between W chromosome and Y chromosome evolution.

Collaboration


Dive into the Reto Burri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge